Algebraic and topological properties of some sets in $\ell_1$
Colloquium Mathematicum, Tome 129 (2012) no. 1, pp. 75-85
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a sequence $x \in\ell_1 \setminus c_{00}$, one can consider the set $E(x)$ of
all subsums of the series $\sum_{n=1}^{\infty} x(n)$. Guthrie and Nymann proved that $E(x)$
is one of the following types of sets:
$(\mathcal{I})$ a finite union of closed intervals; $(\mathcal{C})$ homeomorphic to the Cantor set;
$(\mathcal{MC})$ homeomorphic to the set $T$ of subsums of $\sum_{n=1}^\infty b(n)$
where $b(2n-1) = 3/4^n$ and $b(2n) = 2/4^n$.
Denote by $\mathcal I$, $\mathcal C$ and $\mathcal{MC}$
the sets of all sequences $x \in\ell_1 \setminus c_{00}$
such that $E(x)$ has the property ($\mathcal I$), ($\mathcal C$) and ($\mathcal{MC}$), respectively.
We show that $\mathcal I$ and $\mathcal C$ are strongly $\mathfrak{c}$-algebrable and $\mathcal{MC}$ is $\mathfrak{c}$-lineable.
We also show that $\mathcal C$ is a dense $\mathcal G_\delta$-set in $\ell_1$
and $\mathcal I$ is a true $\mathcal F_\sigma$-set. Finally we show that $\mathcal I$ is spaceable while $\mathcal C$ is not.
Keywords:
sequence ell setminus consider set subsums series sum infty guthrie nymann proved following types sets mathcal finite union closed intervals mathcal homeomorphic cantor set mathcal homeomorphic set subsums sum infty where n denote mathcal mathcal mathcal sets sequences ell setminus has property mathcal mathcal mathcal respectively mathcal mathcal strongly mathfrak algebrable mathcal mathfrak lineable mathcal dense mathcal delta set ell mathcal mathcal sigma set finally mathcal spaceable while mathcal
Affiliations des auteurs :
Taras Banakh 1 ; Artur Bartoszewicz 2 ; Szymon Głąb 2 ; Emilia Szymonik 2
@article{10_4064_cm129_1_5,
author = {Taras Banakh and Artur Bartoszewicz and Szymon G{\l}\k{a}b and Emilia Szymonik},
title = {Algebraic and topological properties of some sets in $\ell_1$},
journal = {Colloquium Mathematicum},
pages = {75--85},
publisher = {mathdoc},
volume = {129},
number = {1},
year = {2012},
doi = {10.4064/cm129-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-5/}
}
TY - JOUR AU - Taras Banakh AU - Artur Bartoszewicz AU - Szymon Głąb AU - Emilia Szymonik TI - Algebraic and topological properties of some sets in $\ell_1$ JO - Colloquium Mathematicum PY - 2012 SP - 75 EP - 85 VL - 129 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-5/ DO - 10.4064/cm129-1-5 LA - en ID - 10_4064_cm129_1_5 ER -
%0 Journal Article %A Taras Banakh %A Artur Bartoszewicz %A Szymon Głąb %A Emilia Szymonik %T Algebraic and topological properties of some sets in $\ell_1$ %J Colloquium Mathematicum %D 2012 %P 75-85 %V 129 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-5/ %R 10.4064/cm129-1-5 %G en %F 10_4064_cm129_1_5
Taras Banakh; Artur Bartoszewicz; Szymon Głąb; Emilia Szymonik. Algebraic and topological properties of some sets in $\ell_1$. Colloquium Mathematicum, Tome 129 (2012) no. 1, pp. 75-85. doi: 10.4064/cm129-1-5
Cité par Sources :