Posner's second theorem and annihilator conditions with generalized skew derivations
Colloquium Mathematicum, Tome 129 (2012) no. 1, pp. 61-74.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathcal{R}$ be a prime ring of characteristic different from $2$, $\mathcal{Q}_r$ be its right Martindale quotient ring and $\mathcal{C}$ be its extended centroid. Suppose that $\mathcal{G}$ is a non-zero generalized skew derivation of $\mathcal{R}$ and $f(x_1, \ldots, x_n)$ is a non-central multilinear polynomial over $\mathcal{C}$ with $n$ non-commuting variables. If there exists a non-zero element $a$ of $\mathcal{R}$ such that $a[\mathcal{G}(f(r_1, \ldots, r_n)),f(r_1, \ldots, r_n)]=0$ for all $r_1, \ldots, r_n \in \mathcal{R}$, then one of the following holds: (a) there exists $\lambda \in \mathcal{C}$ such that $\mathcal{G}(x)=\lambda x$ for all $x\in \mathcal{R};$(b) there exist $q\in \mathcal{Q}_r$ and $\lambda \in \mathcal{C}$ such that $\mathcal{G}(x)=(q+\lambda)x+xq$ for all $x\in \mathcal{R}$ and $f(x_1, \ldots, x_n)^2$ is central-valued on $\mathcal{R}$.
DOI : 10.4064/cm129-1-4
Keywords: mathcal prime ring characteristic different mathcal its right martindale quotient ring mathcal its extended centroid suppose mathcal non zero generalized skew derivation mathcal ldots non central multilinear polynomial mathcal non commuting variables there exists non zero element mathcal mathcal ldots ldots ldots mathcal following holds there exists lambda mathcal mathcal lambda mathcal there exist mathcal lambda mathcal mathcal lambda mathcal ldots central valued mathcal

Vincenzo De Filippis 1 ; Feng Wei 2

1 DI.S.I.A., Faculty of Engineering University of Messina Contrada Di Dio 98166 Messina, Italy
2 School of Mathematics Beijing Institute of Technology Beijing, 100081, P.R. China
@article{10_4064_cm129_1_4,
     author = {Vincenzo De Filippis and Feng Wei},
     title = {Posner's second theorem and annihilator
conditions with generalized skew derivations},
     journal = {Colloquium Mathematicum},
     pages = {61--74},
     publisher = {mathdoc},
     volume = {129},
     number = {1},
     year = {2012},
     doi = {10.4064/cm129-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-4/}
}
TY  - JOUR
AU  - Vincenzo De Filippis
AU  - Feng Wei
TI  - Posner's second theorem and annihilator
conditions with generalized skew derivations
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 61
EP  - 74
VL  - 129
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-4/
DO  - 10.4064/cm129-1-4
LA  - en
ID  - 10_4064_cm129_1_4
ER  - 
%0 Journal Article
%A Vincenzo De Filippis
%A Feng Wei
%T Posner's second theorem and annihilator
conditions with generalized skew derivations
%J Colloquium Mathematicum
%D 2012
%P 61-74
%V 129
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-4/
%R 10.4064/cm129-1-4
%G en
%F 10_4064_cm129_1_4
Vincenzo De Filippis; Feng Wei. Posner's second theorem and annihilator
conditions with generalized skew derivations. Colloquium Mathematicum, Tome 129 (2012) no. 1, pp. 61-74. doi : 10.4064/cm129-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-4/

Cité par Sources :