Potential theory of one-dimensional geometric stable processes
Colloquium Mathematicum, Tome 129 (2012) no. 1, pp. 7-40
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The purpose of this paper is to find optimal estimates for the
Green function and the Poisson kernel for a half-line and intervals of the geometric
stable process with parameter $\alpha\in(0,2]$. This process has an infinitesimal generator of the form
$-\log(1+(-{\mit\Delta})^{\alpha/2})$. As an application we prove the global scale invariant Harnack inequality as well as the boundary Harnack principle.
Keywords:
purpose paper optimal estimates green function poisson kernel half line intervals geometric stable process parameter alpha process has infinitesimal generator form log mit delta alpha application prove global scale invariant harnack inequality boundary harnack principle
Affiliations des auteurs :
Tomasz Grzywny 1 ; Michał Ryznar 1
@article{10_4064_cm129_1_2,
author = {Tomasz Grzywny and Micha{\l} Ryznar},
title = {Potential theory of one-dimensional geometric stable processes},
journal = {Colloquium Mathematicum},
pages = {7--40},
year = {2012},
volume = {129},
number = {1},
doi = {10.4064/cm129-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-2/}
}
TY - JOUR AU - Tomasz Grzywny AU - Michał Ryznar TI - Potential theory of one-dimensional geometric stable processes JO - Colloquium Mathematicum PY - 2012 SP - 7 EP - 40 VL - 129 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-2/ DO - 10.4064/cm129-1-2 LA - en ID - 10_4064_cm129_1_2 ER -
Tomasz Grzywny; Michał Ryznar. Potential theory of one-dimensional geometric stable processes. Colloquium Mathematicum, Tome 129 (2012) no. 1, pp. 7-40. doi: 10.4064/cm129-1-2
Cité par Sources :