Weakly precompact subsets of $L_1(\mu,X)$
Colloquium Mathematicum, Tome 129 (2012) no. 1, pp. 133-143.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $(\Omega,\Sigma, \mu)$ be a probability space, $X$ a Banach space, and $L_1(\mu,X)$ the Banach space of Bochner integrable functions $f:\Omega\to X$. Let $W=\{f\in L_1(\mu,X): \text{for a.e.}$ $\omega \in \Omega, \|f(\omega)\|\le 1\}$. In this paper we characterize the weakly precompact subsets of $L_1(\mu,X)$. We prove that a bounded subset $A$ of $L_1(\mu,X)$ is weakly precompact if and only if $A$ is uniformly integrable and for any sequence $(f_n)$ in $A$, there exists a sequence $(g_n)$ with $g_n\in {\rm co}\{f_i: i\ge n\}$ for each $n$ such that for a.e. $\omega \in \Omega$, the sequence $(g_n(\omega))$ is weakly Cauchy in $X$. We also prove that if $A$ is a bounded subset of $L_1(\mu,X)$, then $A$ is weakly precompact if and only if for every $\epsilon >0$, there exist a positive integer $N$ and a weakly precompact subset $H$ of $ NW$ such that $A\subseteq H+\epsilon B(0)$, where $B(0)$ is the unit ball of $L_1(\mu,X)$.
DOI : 10.4064/cm129-1-10
Keywords: omega sigma probability space banach space banach space bochner integrable functions omega text omega omega omega paper characterize weakly precompact subsets prove bounded subset weakly precompact only uniformly integrable sequence there exists sequence each omega omega sequence omega weakly cauchy prove bounded subset weakly precompact only every epsilon there exist positive integer weakly precompact subset subseteq epsilon where unit ball

Ioana Ghenciu 1

1 Mathematics Department University of Wisconsin-River Falls River Falls, WI 54022, U.S.A.
@article{10_4064_cm129_1_10,
     author = {Ioana Ghenciu},
     title = {Weakly precompact subsets of $L_1(\mu,X)$},
     journal = {Colloquium Mathematicum},
     pages = {133--143},
     publisher = {mathdoc},
     volume = {129},
     number = {1},
     year = {2012},
     doi = {10.4064/cm129-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-10/}
}
TY  - JOUR
AU  - Ioana Ghenciu
TI  - Weakly precompact subsets of $L_1(\mu,X)$
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 133
EP  - 143
VL  - 129
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-10/
DO  - 10.4064/cm129-1-10
LA  - en
ID  - 10_4064_cm129_1_10
ER  - 
%0 Journal Article
%A Ioana Ghenciu
%T Weakly precompact subsets of $L_1(\mu,X)$
%J Colloquium Mathematicum
%D 2012
%P 133-143
%V 129
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-10/
%R 10.4064/cm129-1-10
%G en
%F 10_4064_cm129_1_10
Ioana Ghenciu. Weakly precompact subsets of $L_1(\mu,X)$. Colloquium Mathematicum, Tome 129 (2012) no. 1, pp. 133-143. doi : 10.4064/cm129-1-10. http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-10/

Cité par Sources :