Jeśmanowicz' conjecture with congruence relations
Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 211-222
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $a,b$ and $c$ be relatively prime positive integers such that
$a^{2}+b^{2}=c^{2}$.
We prove that if $b \equiv 0 \pmod{2^{r}}$ and $b \equiv \pm 2^{r} \pmod{a}$ for some non-negative integer $r$,
then the Diophantine equation $a^{x}+b^{y}=c^z$ has only the positive solution $(x,y,z)=(2,2,2)$.
We also show that the same holds if $c \equiv -1 \pmod{a}$.
Keywords:
relatively prime positive integers prove equiv pmod equiv pmod non negative integer diophantine equation has only positive solution holds equiv pmod
Affiliations des auteurs :
Yasutsugu Fujita 1 ; Takafumi Miyazaki 2
@article{10_4064_cm128_2_6,
author = {Yasutsugu Fujita and Takafumi Miyazaki},
title = {Je\'smanowicz' conjecture with congruence relations},
journal = {Colloquium Mathematicum},
pages = {211--222},
year = {2012},
volume = {128},
number = {2},
doi = {10.4064/cm128-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-6/}
}
TY - JOUR AU - Yasutsugu Fujita AU - Takafumi Miyazaki TI - Jeśmanowicz' conjecture with congruence relations JO - Colloquium Mathematicum PY - 2012 SP - 211 EP - 222 VL - 128 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-6/ DO - 10.4064/cm128-2-6 LA - en ID - 10_4064_cm128_2_6 ER -
Yasutsugu Fujita; Takafumi Miyazaki. Jeśmanowicz' conjecture with congruence relations. Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 211-222. doi: 10.4064/cm128-2-6
Cité par Sources :