Riemann compatible tensors
Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 197-210.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Derdziński and Shen's theorem on the restrictions on the Riemann tensor imposed by existence of a Codazzi tensor holds more generally when a Riemann compatible tensor exists. Several properties are shown to remain valid in this broader setting. Riemann compatibility is equivalent to the Bianchi identity for a new “Codazzi deviation tensor”, with a geometric significance. The above general properties are studied, with their implications on Pontryagin forms. Examples are given of manifolds with Riemann compatible tensors, in particular those generated by geodesic mappings. Compatibility is extended to generalized curvature tensors, with an application to Weyl's tensor and general relativity.
DOI : 10.4064/cm128-2-5
Mots-clés : derdzi ski shens theorem restrictions riemann tensor imposed existence codazzi tensor holds generally riemann compatible tensor exists several properties shown remain valid broader setting riemann compatibility equivalent bianchi identity codazzi deviation tensor geometric significance above general properties studied their implications pontryagin forms examples given manifolds riemann compatible tensors particular those generated geodesic mappings compatibility extended generalized curvature tensors application weyls tensor general relativity

Carlo Alberto Mantica 1 ; Luca Guido Molinari 2

1 I.I.S. Lagrange Via L. Modignani 65 20161, Milano, Italy
2 Physics Department Università degli Studi di Milano and I.N.F.N. sezione di Milano Via Celoria 16 20133 Milano, Italy
@article{10_4064_cm128_2_5,
     author = {Carlo Alberto Mantica and Luca Guido Molinari},
     title = {Riemann compatible tensors},
     journal = {Colloquium Mathematicum},
     pages = {197--210},
     publisher = {mathdoc},
     volume = {128},
     number = {2},
     year = {2012},
     doi = {10.4064/cm128-2-5},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-5/}
}
TY  - JOUR
AU  - Carlo Alberto Mantica
AU  - Luca Guido Molinari
TI  - Riemann compatible tensors
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 197
EP  - 210
VL  - 128
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-5/
DO  - 10.4064/cm128-2-5
LA  - de
ID  - 10_4064_cm128_2_5
ER  - 
%0 Journal Article
%A Carlo Alberto Mantica
%A Luca Guido Molinari
%T Riemann compatible tensors
%J Colloquium Mathematicum
%D 2012
%P 197-210
%V 128
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-5/
%R 10.4064/cm128-2-5
%G de
%F 10_4064_cm128_2_5
Carlo Alberto Mantica; Luca Guido Molinari. Riemann compatible tensors. Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 197-210. doi : 10.4064/cm128-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-5/

Cité par Sources :