Congruent numbers over real number fields
Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 179-186
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is classical that a natural number $n$ is congruent
iff the rank of $\mathbb{Q}$-points on $E_{n}:y^{2}=x^{3}-n^{2}x$
is positive.
In this paper, following Tada (2001), we consider generalised
congruent numbers. We extend the above classical criterion to several infinite
families of real number fields.
Keywords:
classical natural number congruent rank mathbb points n positive paper following tada consider generalised congruent numbers extend above classical criterion several infinite families real number fields
Affiliations des auteurs :
Tomasz Jędrzejak 1
@article{10_4064_cm128_2_3,
author = {Tomasz J\k{e}drzejak},
title = {Congruent numbers over real number fields},
journal = {Colloquium Mathematicum},
pages = {179--186},
publisher = {mathdoc},
volume = {128},
number = {2},
year = {2012},
doi = {10.4064/cm128-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-3/}
}
Tomasz Jędrzejak. Congruent numbers over real number fields. Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 179-186. doi: 10.4064/cm128-2-3
Cité par Sources :