A sharp bound for the Schwarzian derivative of concave functions
Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 245-251.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We derive a sharp bound for the modulus of the Schwarzian derivative of concave univalent functions with opening angle at infinity less than or equal to $\pi \alpha $, $\alpha \in [1,2].$
DOI : 10.4064/cm128-2-10
Keywords: derive sharp bound modulus schwarzian derivative concave univalent functions opening angle infinity equal alpha alpha

Bappaditya Bhowmik 1 ; Karl-Joachim Wirths 2

1 Department of Mathematics National Institute of Technology Rourkela 769008, India
2 Institut für Analysis and Algebra TU Braunschweig 38106 Braunschweig, Germany
@article{10_4064_cm128_2_10,
     author = {Bappaditya Bhowmik and Karl-Joachim Wirths},
     title = {A sharp bound for the {Schwarzian} derivative
 of concave functions},
     journal = {Colloquium Mathematicum},
     pages = {245--251},
     publisher = {mathdoc},
     volume = {128},
     number = {2},
     year = {2012},
     doi = {10.4064/cm128-2-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-10/}
}
TY  - JOUR
AU  - Bappaditya Bhowmik
AU  - Karl-Joachim Wirths
TI  - A sharp bound for the Schwarzian derivative
 of concave functions
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 245
EP  - 251
VL  - 128
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-10/
DO  - 10.4064/cm128-2-10
LA  - en
ID  - 10_4064_cm128_2_10
ER  - 
%0 Journal Article
%A Bappaditya Bhowmik
%A Karl-Joachim Wirths
%T A sharp bound for the Schwarzian derivative
 of concave functions
%J Colloquium Mathematicum
%D 2012
%P 245-251
%V 128
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-10/
%R 10.4064/cm128-2-10
%G en
%F 10_4064_cm128_2_10
Bappaditya Bhowmik; Karl-Joachim Wirths. A sharp bound for the Schwarzian derivative
 of concave functions. Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 245-251. doi : 10.4064/cm128-2-10. http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-10/

Cité par Sources :