A sharp bound for the Schwarzian derivative
of concave functions
Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 245-251
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We derive a sharp bound for the modulus of the Schwarzian derivative of concave univalent functions with opening angle at infinity less than or equal to $\pi \alpha $, $\alpha \in [1,2].$
Keywords:
derive sharp bound modulus schwarzian derivative concave univalent functions opening angle infinity equal alpha alpha
Affiliations des auteurs :
Bappaditya Bhowmik 1 ; Karl-Joachim Wirths 2
@article{10_4064_cm128_2_10,
author = {Bappaditya Bhowmik and Karl-Joachim Wirths},
title = {A sharp bound for the {Schwarzian} derivative
of concave functions},
journal = {Colloquium Mathematicum},
pages = {245--251},
publisher = {mathdoc},
volume = {128},
number = {2},
year = {2012},
doi = {10.4064/cm128-2-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-10/}
}
TY - JOUR AU - Bappaditya Bhowmik AU - Karl-Joachim Wirths TI - A sharp bound for the Schwarzian derivative of concave functions JO - Colloquium Mathematicum PY - 2012 SP - 245 EP - 251 VL - 128 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-10/ DO - 10.4064/cm128-2-10 LA - en ID - 10_4064_cm128_2_10 ER -
%0 Journal Article %A Bappaditya Bhowmik %A Karl-Joachim Wirths %T A sharp bound for the Schwarzian derivative of concave functions %J Colloquium Mathematicum %D 2012 %P 245-251 %V 128 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-10/ %R 10.4064/cm128-2-10 %G en %F 10_4064_cm128_2_10
Bappaditya Bhowmik; Karl-Joachim Wirths. A sharp bound for the Schwarzian derivative of concave functions. Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 245-251. doi: 10.4064/cm128-2-10
Cité par Sources :