The dimension of hyperspaces of non-metrizable continua
Colloquium Mathematicum, Tome 128 (2012) no. 1, pp. 101-107
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that, for any Hausdorff continuum $X$, if $\dim X \geq 2$ then the
hyperspace $C(X)$ of subcontinua of $X$ is not a $C$-space;
if $\dim X=1$ and $X$ is hereditarily indecomposable then either $\dim C(X)=2$
or $C(X)$ is not a $C$-space.
This generalizes some results known for metric continua.
Keywords:
prove hausdorff continuum dim geq hyperspace subcontinua c space dim hereditarily indecomposable either dim c space generalizes results known metric continua
Affiliations des auteurs :
Wojciech Stadnicki 1
@article{10_4064_cm128_1_9,
author = {Wojciech Stadnicki},
title = {The dimension of hyperspaces of non-metrizable continua},
journal = {Colloquium Mathematicum},
pages = {101--107},
publisher = {mathdoc},
volume = {128},
number = {1},
year = {2012},
doi = {10.4064/cm128-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm128-1-9/}
}
Wojciech Stadnicki. The dimension of hyperspaces of non-metrizable continua. Colloquium Mathematicum, Tome 128 (2012) no. 1, pp. 101-107. doi: 10.4064/cm128-1-9
Cité par Sources :