One-parameter semigroups in the convolution algebra
of rapidly decreasing distributions
Colloquium Mathematicum, Tome 128 (2012) no. 1, pp. 49-68
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The paper is devoted to infinitely differentiable one-parameter convolution semigroups in the convolution algebra $\mathcal O_C^{\prime}({\mathbb R}^n;M_{m\times m})$ of matrix valued rapidly decreasing
distributions on ${\mathbb R}^n$. It is proved that $G\in\mathcal O_C^\prime({\mathbb R}^n;M_{m\times m})$ is the generating distribution of an i.d.c.s. if and only if the operator $\partial_{t}\otimes
\mathbb{1}_{m\times m}-G\,*$
on $\mathbb R^{1+n}$ satisfies the Petrovskiĭ
condition for forward evolution. Some consequences are discussed.
Keywords:
paper devoted infinitely differentiable one parameter convolution semigroups convolution algebra mathcal prime mathbb times matrix valued rapidly decreasing distributions mathbb proved mathcal prime mathbb times generating distribution s only operator partial otimes mathbb times g * mathbb satisfies petrovski condition forward evolution consequences discussed
Affiliations des auteurs :
Jan Kisyński 1
@article{10_4064_cm128_1_6,
author = {Jan Kisy\'nski},
title = {One-parameter semigroups in the convolution algebra
of rapidly decreasing distributions},
journal = {Colloquium Mathematicum},
pages = {49--68},
publisher = {mathdoc},
volume = {128},
number = {1},
year = {2012},
doi = {10.4064/cm128-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm128-1-6/}
}
TY - JOUR AU - Jan Kisyński TI - One-parameter semigroups in the convolution algebra of rapidly decreasing distributions JO - Colloquium Mathematicum PY - 2012 SP - 49 EP - 68 VL - 128 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm128-1-6/ DO - 10.4064/cm128-1-6 LA - en ID - 10_4064_cm128_1_6 ER -
Jan Kisyński. One-parameter semigroups in the convolution algebra of rapidly decreasing distributions. Colloquium Mathematicum, Tome 128 (2012) no. 1, pp. 49-68. doi: 10.4064/cm128-1-6
Cité par Sources :