On twisted group algebras of
OTP representation type
Colloquium Mathematicum, Tome 127 (2012) no. 2, pp. 213-232
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Assume that $S$ is a commutative complete discrete valuation domain of characteristic $p$, $S^*$ is the unit group of $S$ and $G=G_p\times B$ is a finite group, where $G_p$ is a $p$-group and $B$ is a $p'$-group. Denote by $S^\lambda G$ the twisted group algebra of $G$ over $S$ with a $2$-cocycle $\lambda \in Z^2(G,S^*)$. We give necessary and sufficient conditions for $S^\lambda G$ to be of OTP representation type, in the sense that every indecomposable $S^\lambda G$-module is isomorphic to the outer tensor product $V\mathbin {\#}W$ of an indecomposable $S^\lambda G_p$-module $V$ and an irreducible $S^\lambda B$-module $W$.
Keywords:
assume commutative complete discrete valuation domain characteristic * unit group times finite group where p group p group denote lambda twisted group algebra cocycle lambda * necessary sufficient conditions lambda otp representation type sense every indecomposable lambda g module isomorphic outer tensor product mathbin indecomposable lambda p module irreducible lambda b module
Affiliations des auteurs :
Leonid F. Barannyk 1 ; Dariusz Klein 1
@article{10_4064_cm127_2_5,
author = {Leonid F. Barannyk and Dariusz Klein},
title = {On twisted group algebras of
{OTP} representation type},
journal = {Colloquium Mathematicum},
pages = {213--232},
publisher = {mathdoc},
volume = {127},
number = {2},
year = {2012},
doi = {10.4064/cm127-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm127-2-5/}
}
TY - JOUR AU - Leonid F. Barannyk AU - Dariusz Klein TI - On twisted group algebras of OTP representation type JO - Colloquium Mathematicum PY - 2012 SP - 213 EP - 232 VL - 127 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm127-2-5/ DO - 10.4064/cm127-2-5 LA - en ID - 10_4064_cm127_2_5 ER -
Leonid F. Barannyk; Dariusz Klein. On twisted group algebras of OTP representation type. Colloquium Mathematicum, Tome 127 (2012) no. 2, pp. 213-232. doi: 10.4064/cm127-2-5
Cité par Sources :