Direct sums of semi-projective modules
Colloquium Mathematicum, Tome 127 (2012) no. 1, pp. 67-81
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We investigate when the direct sum of semi-projective modules is semi-projective. It is proved that if $R$ is a right Ore domain with right quotient division ring $Q \not =R$ and $X$ is a free right $R$-module then the right $R$-module $Q \oplus X$ is semi-projective if and only if there does not exist an $R$-epimorphism from $X$ to $Q$.
Keywords:
investigate direct sum semi projective modules semi projective proved right ore domain right quotient division ring right r module right r module oplus semi projective only there does exist r epimorphism
Affiliations des auteurs :
Derya Keskin Tütüncü 1 ; Berke Kaleboğaz 1 ; Patrick F. Smith 2
@article{10_4064_cm127_1_5,
author = {Derya Keskin T\"ut\"unc\"u and Berke Kalebo\u{g}az and Patrick F. Smith},
title = {Direct sums of semi-projective modules},
journal = {Colloquium Mathematicum},
pages = {67--81},
year = {2012},
volume = {127},
number = {1},
doi = {10.4064/cm127-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm127-1-5/}
}
TY - JOUR AU - Derya Keskin Tütüncü AU - Berke Kaleboğaz AU - Patrick F. Smith TI - Direct sums of semi-projective modules JO - Colloquium Mathematicum PY - 2012 SP - 67 EP - 81 VL - 127 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm127-1-5/ DO - 10.4064/cm127-1-5 LA - en ID - 10_4064_cm127_1_5 ER -
Derya Keskin Tütüncü; Berke Kaleboğaz; Patrick F. Smith. Direct sums of semi-projective modules. Colloquium Mathematicum, Tome 127 (2012) no. 1, pp. 67-81. doi: 10.4064/cm127-1-5
Cité par Sources :