Maximal entropy measures in dimension zero
Colloquium Mathematicum, Tome 127 (2012) no. 1, pp. 55-66
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that an invertible zero-dimensional dynamical system has an invariant measure of maximal entropy if and only if it is an extension of an asymptotically $h$-expansive system of equal topological entropy.
Keywords:
prove invertible zero dimensional dynamical system has invariant measure maximal entropy only an extension asymptotically h expansive system equal topological entropy
Affiliations des auteurs :
Dawid Huczek 1
@article{10_4064_cm127_1_4,
author = {Dawid Huczek},
title = {Maximal entropy measures in dimension zero},
journal = {Colloquium Mathematicum},
pages = {55--66},
publisher = {mathdoc},
volume = {127},
number = {1},
year = {2012},
doi = {10.4064/cm127-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm127-1-4/}
}
Dawid Huczek. Maximal entropy measures in dimension zero. Colloquium Mathematicum, Tome 127 (2012) no. 1, pp. 55-66. doi: 10.4064/cm127-1-4
Cité par Sources :