Unconditionality, Fourier multipliers and Schur multipliers
Colloquium Mathematicum, Tome 127 (2012) no. 1, pp. 17-37.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be an infinite locally compact abelian group and $X$ be a Banach space. We show that if every bounded Fourier multiplier $T$ on $L^2(G)$ has the property that $T\otimes {\rm Id}_X$ is bounded on $L^2(G,X)$ then $X$ is isomorphic to a Hilbert space. Moreover, we prove that if $1 p \infty $, $p\not =2$, then there exists a bounded Fourier multiplier on $L^p(G)$ which is not completely bounded. Finally, we examine unconditionality from the point of view of Schur multipliers. More precisely, we give several necessary and sufficient conditions for an operator space to be completely isomorphic to an operator Hilbert space.
DOI : 10.4064/cm127-1-2
Keywords: infinite locally compact abelian group banach space every bounded fourier multiplier has property otimes bounded isomorphic hilbert space moreover prove infty there exists bounded fourier multiplier which completely bounded finally examine unconditionality point view schur multipliers precisely several necessary sufficient conditions operator space completely isomorphic operator hilbert space

Cédric Arhancet 1

1 Laboratoire de Mathématiques Université de Franche-Comté 25030 Besançon Cedex, France
@article{10_4064_cm127_1_2,
     author = {C\'edric Arhancet},
     title = {Unconditionality, {Fourier} multipliers
 and {Schur} multipliers},
     journal = {Colloquium Mathematicum},
     pages = {17--37},
     publisher = {mathdoc},
     volume = {127},
     number = {1},
     year = {2012},
     doi = {10.4064/cm127-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm127-1-2/}
}
TY  - JOUR
AU  - Cédric Arhancet
TI  - Unconditionality, Fourier multipliers
 and Schur multipliers
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 17
EP  - 37
VL  - 127
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm127-1-2/
DO  - 10.4064/cm127-1-2
LA  - en
ID  - 10_4064_cm127_1_2
ER  - 
%0 Journal Article
%A Cédric Arhancet
%T Unconditionality, Fourier multipliers
 and Schur multipliers
%J Colloquium Mathematicum
%D 2012
%P 17-37
%V 127
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm127-1-2/
%R 10.4064/cm127-1-2
%G en
%F 10_4064_cm127_1_2
Cédric Arhancet. Unconditionality, Fourier multipliers
 and Schur multipliers. Colloquium Mathematicum, Tome 127 (2012) no. 1, pp. 17-37. doi : 10.4064/cm127-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm127-1-2/

Cité par Sources :