Stability results for rotationally invariant constant mean curvature surfaces in hyperbolic space
Colloquium Mathematicum, Tome 126 (2012) no. 2, pp. 269-280.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the existence of many constant mean curvature surfaces of revolution with two ends which are immersed or embedded in hyperbolic space. We also study their stability.
DOI : 10.4064/cm126-2-9
Keywords: prove existence many constant mean curvature surfaces revolution ends which immersed embedded hyperbolic space study their stability

Mohamed Jleli 1

1 Department of Mathematics King Saud University Riyadh, Saudi Arabia
@article{10_4064_cm126_2_9,
     author = {Mohamed Jleli},
     title = {Stability results for rotationally invariant
 constant mean curvature surfaces
 in hyperbolic space},
     journal = {Colloquium Mathematicum},
     pages = {269--280},
     publisher = {mathdoc},
     volume = {126},
     number = {2},
     year = {2012},
     doi = {10.4064/cm126-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-9/}
}
TY  - JOUR
AU  - Mohamed Jleli
TI  - Stability results for rotationally invariant
 constant mean curvature surfaces
 in hyperbolic space
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 269
EP  - 280
VL  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-9/
DO  - 10.4064/cm126-2-9
LA  - en
ID  - 10_4064_cm126_2_9
ER  - 
%0 Journal Article
%A Mohamed Jleli
%T Stability results for rotationally invariant
 constant mean curvature surfaces
 in hyperbolic space
%J Colloquium Mathematicum
%D 2012
%P 269-280
%V 126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-9/
%R 10.4064/cm126-2-9
%G en
%F 10_4064_cm126_2_9
Mohamed Jleli. Stability results for rotationally invariant
 constant mean curvature surfaces
 in hyperbolic space. Colloquium Mathematicum, Tome 126 (2012) no. 2, pp. 269-280. doi : 10.4064/cm126-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-9/

Cité par Sources :