Stability results for rotationally invariant
constant mean curvature surfaces
in hyperbolic space
Colloquium Mathematicum, Tome 126 (2012) no. 2, pp. 269-280
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove the existence of many constant mean curvature surfaces of revolution with two ends which are immersed or embedded in hyperbolic space. We also study their stability.
Keywords:
prove existence many constant mean curvature surfaces revolution ends which immersed embedded hyperbolic space study their stability
Affiliations des auteurs :
Mohamed Jleli 1
@article{10_4064_cm126_2_9,
author = {Mohamed Jleli},
title = {Stability results for rotationally invariant
constant mean curvature surfaces
in hyperbolic space},
journal = {Colloquium Mathematicum},
pages = {269--280},
year = {2012},
volume = {126},
number = {2},
doi = {10.4064/cm126-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-9/}
}
TY - JOUR AU - Mohamed Jleli TI - Stability results for rotationally invariant constant mean curvature surfaces in hyperbolic space JO - Colloquium Mathematicum PY - 2012 SP - 269 EP - 280 VL - 126 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-9/ DO - 10.4064/cm126-2-9 LA - en ID - 10_4064_cm126_2_9 ER -
%0 Journal Article %A Mohamed Jleli %T Stability results for rotationally invariant constant mean curvature surfaces in hyperbolic space %J Colloquium Mathematicum %D 2012 %P 269-280 %V 126 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-9/ %R 10.4064/cm126-2-9 %G en %F 10_4064_cm126_2_9
Mohamed Jleli. Stability results for rotationally invariant constant mean curvature surfaces in hyperbolic space. Colloquium Mathematicum, Tome 126 (2012) no. 2, pp. 269-280. doi: 10.4064/cm126-2-9
Cité par Sources :