Entropy of a doubly stochastic Markov operator and of
its shift on the space of trajectories
Colloquium Mathematicum, Tome 126 (2012) no. 2, pp. 205-216
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We define the space of trajectories of a
doubly stochastic operator on $L^1(X,\mu)$ as a shift space
$(X^\mathbb N,\nu,\sigma)$, where $\nu$ is a probability measure defined as
in the Ionescu–Tulcea theorem and $\sigma$ is the shift
transformation. We study connections between the entropy of a doubly
stochastic operator and the entropy of the shift on the space of
trajectories of this operator.
Keywords:
define space trajectories doubly stochastic operator shift space mathbb sigma where probability measure defined ionescu tulcea theorem sigma shift transformation study connections between entropy doubly stochastic operator entropy shift space trajectories operator
Affiliations des auteurs :
Paulina Frej 1
@article{10_4064_cm126_2_5,
author = {Paulina Frej},
title = {Entropy of a doubly stochastic {Markov} operator and of
its shift on the space of trajectories},
journal = {Colloquium Mathematicum},
pages = {205--216},
year = {2012},
volume = {126},
number = {2},
doi = {10.4064/cm126-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-5/}
}
TY - JOUR AU - Paulina Frej TI - Entropy of a doubly stochastic Markov operator and of its shift on the space of trajectories JO - Colloquium Mathematicum PY - 2012 SP - 205 EP - 216 VL - 126 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-5/ DO - 10.4064/cm126-2-5 LA - en ID - 10_4064_cm126_2_5 ER -
Paulina Frej. Entropy of a doubly stochastic Markov operator and of its shift on the space of trajectories. Colloquium Mathematicum, Tome 126 (2012) no. 2, pp. 205-216. doi: 10.4064/cm126-2-5
Cité par Sources :