Entropy of a doubly stochastic Markov operator and of its shift on the space of trajectories
Colloquium Mathematicum, Tome 126 (2012) no. 2, pp. 205-216.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define the space of trajectories of a doubly stochastic operator on $L^1(X,\mu)$ as a shift space $(X^\mathbb N,\nu,\sigma)$, where $\nu$ is a probability measure defined as in the Ionescu–Tulcea theorem and $\sigma$ is the shift transformation. We study connections between the entropy of a doubly stochastic operator and the entropy of the shift on the space of trajectories of this operator.
DOI : 10.4064/cm126-2-5
Keywords: define space trajectories doubly stochastic operator shift space mathbb sigma where probability measure defined ionescu tulcea theorem sigma shift transformation study connections between entropy doubly stochastic operator entropy shift space trajectories operator

Paulina Frej 1

1 Institute of Mathematics and Computer Science Wrocław University of Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland
@article{10_4064_cm126_2_5,
     author = {Paulina Frej},
     title = {Entropy of a doubly stochastic {Markov} operator and of 
its shift on the space of trajectories},
     journal = {Colloquium Mathematicum},
     pages = {205--216},
     publisher = {mathdoc},
     volume = {126},
     number = {2},
     year = {2012},
     doi = {10.4064/cm126-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-5/}
}
TY  - JOUR
AU  - Paulina Frej
TI  - Entropy of a doubly stochastic Markov operator and of 
its shift on the space of trajectories
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 205
EP  - 216
VL  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-5/
DO  - 10.4064/cm126-2-5
LA  - en
ID  - 10_4064_cm126_2_5
ER  - 
%0 Journal Article
%A Paulina Frej
%T Entropy of a doubly stochastic Markov operator and of 
its shift on the space of trajectories
%J Colloquium Mathematicum
%D 2012
%P 205-216
%V 126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-5/
%R 10.4064/cm126-2-5
%G en
%F 10_4064_cm126_2_5
Paulina Frej. Entropy of a doubly stochastic Markov operator and of 
its shift on the space of trajectories. Colloquium Mathematicum, Tome 126 (2012) no. 2, pp. 205-216. doi : 10.4064/cm126-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-5/

Cité par Sources :