Generalized Riesz products produced from orthonormal transforms
Colloquium Mathematicum, Tome 126 (2012) no. 2, pp. 141-154
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal M_p=\{m_k\}_{k=0}^{p-1}$ be a finite set of step
functions or real valued trigonometric polynomials on $\mathbb T=[0,1)$
satisfying a certain orthonormality condition.
We study multiscale generalized Riesz product measures $\mu$ defined
as weak-$^*$ limits of elements $\mu_N \in V_N$ $(N\in \mathbb N)$, where
$V_N$ are $p^N$-dimensional subspaces of $L_2(\mathbb T)$ spanned by an
orthonormal set which is produced from dilations and
multiplications of elements of $\mathcal M_p$
and $\overline{\bigcup_{N \in \mathbb N}V_N}=L_2(\mathbb T)$. The results involve mutual absolute
continuity or singularity of such Riesz products extending
previous results on multiscale Riesz products.
Keywords:
mathcal p finite set step functions real valued trigonometric polynomials mathbb satisfying certain orthonormality condition study multiscale generalized riesz product measures defined weak * limits elements mathbb where n dimensional subspaces mathbb spanned orthonormal set which produced dilations multiplications elements mathcal overline bigcup mathbb mathbb results involve mutual absolute continuity singularity riesz products extending previous results multiscale riesz products
Affiliations des auteurs :
Nikolaos Atreas 1 ; Antonis Bisbas 2
@article{10_4064_cm126_2_1,
author = {Nikolaos Atreas and Antonis Bisbas},
title = {Generalized {Riesz} products produced from orthonormal transforms},
journal = {Colloquium Mathematicum},
pages = {141--154},
year = {2012},
volume = {126},
number = {2},
doi = {10.4064/cm126-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-1/}
}
TY - JOUR AU - Nikolaos Atreas AU - Antonis Bisbas TI - Generalized Riesz products produced from orthonormal transforms JO - Colloquium Mathematicum PY - 2012 SP - 141 EP - 154 VL - 126 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-1/ DO - 10.4064/cm126-2-1 LA - en ID - 10_4064_cm126_2_1 ER -
Nikolaos Atreas; Antonis Bisbas. Generalized Riesz products produced from orthonormal transforms. Colloquium Mathematicum, Tome 126 (2012) no. 2, pp. 141-154. doi: 10.4064/cm126-2-1
Cité par Sources :