Generalized Riesz products produced from orthonormal transforms
Colloquium Mathematicum, Tome 126 (2012) no. 2, pp. 141-154.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathcal M_p=\{m_k\}_{k=0}^{p-1}$ be a finite set of step functions or real valued trigonometric polynomials on $\mathbb T=[0,1)$ satisfying a certain orthonormality condition. We study multiscale generalized Riesz product measures $\mu$ defined as weak-$^*$ limits of elements $\mu_N \in V_N$ $(N\in \mathbb N)$, where $V_N$ are $p^N$-dimensional subspaces of $L_2(\mathbb T)$ spanned by an orthonormal set which is produced from dilations and multiplications of elements of $\mathcal M_p$ and $\overline{\bigcup_{N \in \mathbb N}V_N}=L_2(\mathbb T)$. The results involve mutual absolute continuity or singularity of such Riesz products extending previous results on multiscale Riesz products.
DOI : 10.4064/cm126-2-1
Keywords: mathcal p finite set step functions real valued trigonometric polynomials mathbb satisfying certain orthonormality condition study multiscale generalized riesz product measures defined weak * limits elements mathbb where n dimensional subspaces mathbb spanned orthonormal set which produced dilations multiplications elements mathcal overline bigcup mathbb mathbb results involve mutual absolute continuity singularity riesz products extending previous results multiscale riesz products

Nikolaos Atreas 1 ; Antonis Bisbas 2

1 Department of Mathematics, Physics and Computer Sciences Faculty of Engineering Aristotle University of Thessaloniki 54-124 Thessaloniki, Greece
2 School of Technological Applications Department of General Sciences Institute of West Macedonia Kila 50-100 Kozani, Greece
@article{10_4064_cm126_2_1,
     author = {Nikolaos Atreas and Antonis Bisbas},
     title = {Generalized {Riesz} products produced from orthonormal transforms},
     journal = {Colloquium Mathematicum},
     pages = {141--154},
     publisher = {mathdoc},
     volume = {126},
     number = {2},
     year = {2012},
     doi = {10.4064/cm126-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-1/}
}
TY  - JOUR
AU  - Nikolaos Atreas
AU  - Antonis Bisbas
TI  - Generalized Riesz products produced from orthonormal transforms
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 141
EP  - 154
VL  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-1/
DO  - 10.4064/cm126-2-1
LA  - en
ID  - 10_4064_cm126_2_1
ER  - 
%0 Journal Article
%A Nikolaos Atreas
%A Antonis Bisbas
%T Generalized Riesz products produced from orthonormal transforms
%J Colloquium Mathematicum
%D 2012
%P 141-154
%V 126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-1/
%R 10.4064/cm126-2-1
%G en
%F 10_4064_cm126_2_1
Nikolaos Atreas; Antonis Bisbas. Generalized Riesz products produced from orthonormal transforms. Colloquium Mathematicum, Tome 126 (2012) no. 2, pp. 141-154. doi : 10.4064/cm126-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-1/

Cité par Sources :