On the Brocard–Ramanujan problem and generalizations
Colloquium Mathematicum, Tome 126 (2012) no. 1, pp. 105-110.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $p_i$ denote the $i$th prime. We conjecture that there are precisely $28$ solutions to the equation $n^2-1=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$ in positive integers $n$ and $\alpha_1$,\ldots ,$\alpha_k$. This conjecture implies an explicit description of the set of solutions to the Brocard–Ramanujan equation. We also propose another variant of the Brocard–Ramanujan problem: describe the set of solutions in non-negative integers of the equation $n!+A=x_1^2+x_2^2+x_3^2$ ($A$ fixed).
DOI : 10.4064/cm126-1-7
Keywords: denote ith prime conjecture there precisely solutions equation alpha cdots alpha positive integers alpha ldots alpha conjecture implies explicit description set solutions brocard ramanujan equation propose another variant brocard ramanujan problem describe set solutions non negative integers equation fixed

Andrzej Dąbrowski 1

1 Institute of Mathematics University of Szczecin Wielkopolska 15 70-451 Szczecin, Poland
@article{10_4064_cm126_1_7,
     author = {Andrzej D\k{a}browski},
     title = {On the {Brocard{\textendash}Ramanujan} problem and generalizations},
     journal = {Colloquium Mathematicum},
     pages = {105--110},
     publisher = {mathdoc},
     volume = {126},
     number = {1},
     year = {2012},
     doi = {10.4064/cm126-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-7/}
}
TY  - JOUR
AU  - Andrzej Dąbrowski
TI  - On the Brocard–Ramanujan problem and generalizations
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 105
EP  - 110
VL  - 126
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-7/
DO  - 10.4064/cm126-1-7
LA  - en
ID  - 10_4064_cm126_1_7
ER  - 
%0 Journal Article
%A Andrzej Dąbrowski
%T On the Brocard–Ramanujan problem and generalizations
%J Colloquium Mathematicum
%D 2012
%P 105-110
%V 126
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-7/
%R 10.4064/cm126-1-7
%G en
%F 10_4064_cm126_1_7
Andrzej Dąbrowski. On the Brocard–Ramanujan problem and generalizations. Colloquium Mathematicum, Tome 126 (2012) no. 1, pp. 105-110. doi : 10.4064/cm126-1-7. http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-7/

Cité par Sources :