On the Brocard–Ramanujan problem and generalizations
Colloquium Mathematicum, Tome 126 (2012) no. 1, pp. 105-110
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $p_i$ denote the $i$th prime. We conjecture that
there are precisely $28$ solutions to the equation
$n^2-1=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$ in positive
integers $n$ and $\alpha_1$,\ldots ,$\alpha_k$. This conjecture implies an
explicit description of the set of solutions to the Brocard–Ramanujan
equation. We also propose another variant of the Brocard–Ramanujan
problem: describe the set of solutions in non-negative integers
of the equation $n!+A=x_1^2+x_2^2+x_3^2$ ($A$ fixed).
Keywords:
denote ith prime conjecture there precisely solutions equation alpha cdots alpha positive integers alpha ldots alpha conjecture implies explicit description set solutions brocard ramanujan equation propose another variant brocard ramanujan problem describe set solutions non negative integers equation fixed
Affiliations des auteurs :
Andrzej Dąbrowski 1
@article{10_4064_cm126_1_7,
author = {Andrzej D\k{a}browski},
title = {On the {Brocard{\textendash}Ramanujan} problem and generalizations},
journal = {Colloquium Mathematicum},
pages = {105--110},
year = {2012},
volume = {126},
number = {1},
doi = {10.4064/cm126-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-7/}
}
Andrzej Dąbrowski. On the Brocard–Ramanujan problem and generalizations. Colloquium Mathematicum, Tome 126 (2012) no. 1, pp. 105-110. doi: 10.4064/cm126-1-7
Cité par Sources :