A law of the iterated logarithm for general lacunary series
Colloquium Mathematicum, Tome 126 (2012) no. 1, pp. 95-103
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove a law of the iterated logarithm for sums of the form $\sum_{k=1}^N a_k f(n_k x)$ where the $n_k$ satisfy a Hadamard gap condition. Here we assume that $f$ is a
Dini continuous function on $\mathbb R^n$ which has the property that for every cube $Q$ of sidelength 1 with corners in the lattice $\mathbb Z^n$, $f$
vanishes on $\partial Q$ and has mean value zero on $Q.$
Keywords:
prove law iterated logarithm sums form sum f where satisfy hadamard gap condition here assume dini continuous function mathbb which has property every cube sidelength corners lattice mathbb vanishes partial has mean value zero nbsp
Affiliations des auteurs :
Charles N. Moore 1 ; Xiaojing Zhang 1
@article{10_4064_cm126_1_6,
author = {Charles N. Moore and Xiaojing Zhang},
title = {A law of the iterated logarithm for general lacunary series},
journal = {Colloquium Mathematicum},
pages = {95--103},
year = {2012},
volume = {126},
number = {1},
doi = {10.4064/cm126-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-6/}
}
TY - JOUR AU - Charles N. Moore AU - Xiaojing Zhang TI - A law of the iterated logarithm for general lacunary series JO - Colloquium Mathematicum PY - 2012 SP - 95 EP - 103 VL - 126 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-6/ DO - 10.4064/cm126-1-6 LA - en ID - 10_4064_cm126_1_6 ER -
Charles N. Moore; Xiaojing Zhang. A law of the iterated logarithm for general lacunary series. Colloquium Mathematicum, Tome 126 (2012) no. 1, pp. 95-103. doi: 10.4064/cm126-1-6
Cité par Sources :