A law of the iterated logarithm for general lacunary series
Colloquium Mathematicum, Tome 126 (2012) no. 1, pp. 95-103.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a law of the iterated logarithm for sums of the form $\sum_{k=1}^N a_k f(n_k x)$ where the $n_k$ satisfy a Hadamard gap condition. Here we assume that $f$ is a Dini continuous function on $\mathbb R^n$ which has the property that for every cube $Q$ of sidelength 1 with corners in the lattice $\mathbb Z^n$, $f$ vanishes on $\partial Q$ and has mean value zero on $Q.$
DOI : 10.4064/cm126-1-6
Keywords: prove law iterated logarithm sums form sum f where satisfy hadamard gap condition here assume dini continuous function mathbb which has property every cube sidelength corners lattice mathbb vanishes partial has mean value zero nbsp

Charles N. Moore 1 ; Xiaojing Zhang 1

1 Department of Mathematics Kansas State University Manhattan, KS 66506, U.S.A.
@article{10_4064_cm126_1_6,
     author = {Charles N. Moore and Xiaojing Zhang},
     title = {A law of the iterated logarithm for general lacunary series},
     journal = {Colloquium Mathematicum},
     pages = {95--103},
     publisher = {mathdoc},
     volume = {126},
     number = {1},
     year = {2012},
     doi = {10.4064/cm126-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-6/}
}
TY  - JOUR
AU  - Charles N. Moore
AU  - Xiaojing Zhang
TI  - A law of the iterated logarithm for general lacunary series
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 95
EP  - 103
VL  - 126
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-6/
DO  - 10.4064/cm126-1-6
LA  - en
ID  - 10_4064_cm126_1_6
ER  - 
%0 Journal Article
%A Charles N. Moore
%A Xiaojing Zhang
%T A law of the iterated logarithm for general lacunary series
%J Colloquium Mathematicum
%D 2012
%P 95-103
%V 126
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-6/
%R 10.4064/cm126-1-6
%G en
%F 10_4064_cm126_1_6
Charles N. Moore; Xiaojing Zhang. A law of the iterated logarithm for general lacunary series. Colloquium Mathematicum, Tome 126 (2012) no. 1, pp. 95-103. doi : 10.4064/cm126-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-6/

Cité par Sources :