Standard commuting dilations and liftings
Colloquium Mathematicum, Tome 126 (2012) no. 1, pp. 87-94.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We identify how the standard commuting dilation of the maximal commuting piece of any row contraction, especially on a finite-dimensional Hilbert space, is associated to the minimal isometric dilation of the row contraction. Using the concept of standard commuting dilation it is also shown that if liftings of row contractions are on finite-dimensional Hilbert spaces, then there are strong restrictions on properties of the liftings.
DOI : 10.4064/cm126-1-5
Keywords: identify standard commuting dilation maximal commuting piece row contraction especially finite dimensional hilbert space associated minimal isometric dilation row contraction using concept standard commuting dilation shown liftings row contractions finite dimensional hilbert spaces there strong restrictions properties liftings

Santanu Dey 1

1 Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai 400076, India
@article{10_4064_cm126_1_5,
     author = {Santanu Dey},
     title = {Standard commuting dilations and liftings},
     journal = {Colloquium Mathematicum},
     pages = {87--94},
     publisher = {mathdoc},
     volume = {126},
     number = {1},
     year = {2012},
     doi = {10.4064/cm126-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-5/}
}
TY  - JOUR
AU  - Santanu Dey
TI  - Standard commuting dilations and liftings
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 87
EP  - 94
VL  - 126
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-5/
DO  - 10.4064/cm126-1-5
LA  - en
ID  - 10_4064_cm126_1_5
ER  - 
%0 Journal Article
%A Santanu Dey
%T Standard commuting dilations and liftings
%J Colloquium Mathematicum
%D 2012
%P 87-94
%V 126
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-5/
%R 10.4064/cm126-1-5
%G en
%F 10_4064_cm126_1_5
Santanu Dey. Standard commuting dilations and liftings. Colloquium Mathematicum, Tome 126 (2012) no. 1, pp. 87-94. doi : 10.4064/cm126-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-5/

Cité par Sources :