Finite groups of OTP projective representation type
Colloquium Mathematicum, Tome 126 (2012) no. 1, pp. 35-51
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be a field of characteristic $p>0$, $K^*$ the multiplicative group of $K$ and $G=G_p\times B$ a finite group, where $G_p$ is a $p$-group and $B$ is a $p'$-group. Denote by $K^\lambda G$ a twisted group algebra of $G$ over $K$ with a $2$-cocycle $\lambda \in Z^2(G,K^*)$. We give necessary and sufficient conditions for $G$ to be of OTP projective $K$-representation type, in the sense that there exists a cocycle $\lambda \in Z^2(G,K^*)$ such that every indecomposable $K^\lambda G$-module is isomorphic to the outer tensor product $V\mathbin {\#} W$ of an indecomposable $K^\lambda G_p$-module $V$ and a simple $K^\lambda B$-module $W$. We also exhibit finite groups $G=G_p\times B$ such that, for any $\lambda \in Z^2(G,K^*)$, every indecomposable $K^\lambda G$-module satisfies this condition.
Keywords:
field characteristic * multiplicative group times finite group where p group p group denote lambda twisted group algebra cocycle lambda * necessary sufficient conditions otp projective k representation type sense there exists cocycle lambda * every indecomposable lambda g module isomorphic outer tensor product mathbin indecomposable lambda p module simple lambda b module exhibit finite groups times lambda * every indecomposable lambda g module satisfies condition
Affiliations des auteurs :
Leonid F. Barannyk 1
@article{10_4064_cm126_1_2,
author = {Leonid F. Barannyk},
title = {Finite groups of {OTP} projective representation type},
journal = {Colloquium Mathematicum},
pages = {35--51},
year = {2012},
volume = {126},
number = {1},
doi = {10.4064/cm126-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-2/}
}
Leonid F. Barannyk. Finite groups of OTP projective representation type. Colloquium Mathematicum, Tome 126 (2012) no. 1, pp. 35-51. doi: 10.4064/cm126-1-2
Cité par Sources :