Finite groups of OTP projective representation type
Colloquium Mathematicum, Tome 126 (2012) no. 1, pp. 35-51.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $K$ be a field of characteristic $p>0$, $K^*$ the multiplicative group of $K$ and $G=G_p\times B$ a finite group, where $G_p$ is a $p$-group and $B$ is a $p'$-group. Denote by $K^\lambda G$ a twisted group algebra of $G$ over $K$ with a $2$-cocycle $\lambda \in Z^2(G,K^*)$. We give necessary and sufficient conditions for $G$ to be of OTP projective $K$-representation type, in the sense that there exists a cocycle $\lambda \in Z^2(G,K^*)$ such that every indecomposable $K^\lambda G$-module is isomorphic to the outer tensor product $V\mathbin {\#} W$ of an indecomposable $K^\lambda G_p$-module $V$ and a simple $K^\lambda B$-module $W$. We also exhibit finite groups $G=G_p\times B$ such that, for any $\lambda \in Z^2(G,K^*)$, every indecomposable $K^\lambda G$-module satisfies this condition.
DOI : 10.4064/cm126-1-2
Keywords: field characteristic * multiplicative group times finite group where p group p group denote lambda twisted group algebra cocycle lambda * necessary sufficient conditions otp projective k representation type sense there exists cocycle lambda * every indecomposable lambda g module isomorphic outer tensor product mathbin indecomposable lambda p module simple lambda b module exhibit finite groups times lambda * every indecomposable lambda g module satisfies condition

Leonid F. Barannyk 1

1 Institute of Mathematics Pomeranian University of Słupsk Arciszewskiego 22b 76-200 Słupsk, Poland
@article{10_4064_cm126_1_2,
     author = {Leonid F. Barannyk},
     title = {Finite groups of {OTP} projective representation type},
     journal = {Colloquium Mathematicum},
     pages = {35--51},
     publisher = {mathdoc},
     volume = {126},
     number = {1},
     year = {2012},
     doi = {10.4064/cm126-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-2/}
}
TY  - JOUR
AU  - Leonid F. Barannyk
TI  - Finite groups of OTP projective representation type
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 35
EP  - 51
VL  - 126
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-2/
DO  - 10.4064/cm126-1-2
LA  - en
ID  - 10_4064_cm126_1_2
ER  - 
%0 Journal Article
%A Leonid F. Barannyk
%T Finite groups of OTP projective representation type
%J Colloquium Mathematicum
%D 2012
%P 35-51
%V 126
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-2/
%R 10.4064/cm126-1-2
%G en
%F 10_4064_cm126_1_2
Leonid F. Barannyk. Finite groups of OTP projective representation type. Colloquium Mathematicum, Tome 126 (2012) no. 1, pp. 35-51. doi : 10.4064/cm126-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm126-1-2/

Cité par Sources :