On the Dunford–Pettis property of tensor product spaces
Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 221-231.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give sufficient conditions on Banach spaces $E$ and $F$ so that their projective tensor product $E\otimes _\pi F$ and the duals of their projective and injective tensor products do not have the Dunford–Pettis property. We prove that if $E^*$ does not have the Schur property, $F$ is infinite-dimensional, and every operator $T:E^*\to F^{**}$ is completely continuous, then $(E\otimes _\epsilon F)^*$ does not have the DPP. We also prove that if $E^*$ does not have the Schur property, $F$ is infinite-dimensional, and every operator $T: F^{**} \to E^*$ is completely continuous, then $(E\otimes _\pi F)^*\simeq L(E,F^*)$ does not have the DPP.
DOI : 10.4064/cm125-2-7
Keywords: sufficient conditions banach spaces their projective tensor product otimes duals their projective injective tensor products have dunford pettis property prove * does have schur property infinite dimensional every operator * ** completely continuous otimes epsilon * does have dpp prove * does have schur property infinite dimensional every operator ** * completely continuous otimes * simeq * does have dpp

Ioana Ghenciu 1

1 Mathematics Department University of Wisconsin-River Falls River Falls, WI 54022, U.S.A.
@article{10_4064_cm125_2_7,
     author = {Ioana Ghenciu},
     title = {On the {Dunford{\textendash}Pettis} property
 of tensor product spaces},
     journal = {Colloquium Mathematicum},
     pages = {221--231},
     publisher = {mathdoc},
     volume = {125},
     number = {2},
     year = {2011},
     doi = {10.4064/cm125-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-7/}
}
TY  - JOUR
AU  - Ioana Ghenciu
TI  - On the Dunford–Pettis property
 of tensor product spaces
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 221
EP  - 231
VL  - 125
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-7/
DO  - 10.4064/cm125-2-7
LA  - en
ID  - 10_4064_cm125_2_7
ER  - 
%0 Journal Article
%A Ioana Ghenciu
%T On the Dunford–Pettis property
 of tensor product spaces
%J Colloquium Mathematicum
%D 2011
%P 221-231
%V 125
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-7/
%R 10.4064/cm125-2-7
%G en
%F 10_4064_cm125_2_7
Ioana Ghenciu. On the Dunford–Pettis property
 of tensor product spaces. Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 221-231. doi : 10.4064/cm125-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-7/

Cité par Sources :