Spaces of compact operators on $C({\bf 2}^{\mathfrak m} \times [0,
\alpha])$ spaces
Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 175-181
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We classify, up to isomorphism, the spaces of
compact
operators ${\mathcal K}(E, F)$, where $E$ and $F$ are the Banach spaces of all
continuous functions defined on the compact spaces ${\bf 2}^{\mathfrak m} \times [0,
\alpha]$, the topological products of Cantor cubes ${\bf 2}^{\mathfrak m}$ and intervals
of ordinal numbers $[0, \alpha]$.
Keywords:
classify isomorphism spaces compact operators mathcal where banach spaces continuous functions defined compact spaces mathfrak times alpha topological products cantor cubes mathfrak intervals ordinal numbers alpha
Affiliations des auteurs :
Elói Medina Galego 1
@article{10_4064_cm125_2_3,
author = {El\'oi Medina Galego},
title = {Spaces of compact operators on $C({\bf 2}^{\mathfrak m} \times [0,
\alpha])$ spaces},
journal = {Colloquium Mathematicum},
pages = {175--181},
publisher = {mathdoc},
volume = {125},
number = {2},
year = {2011},
doi = {10.4064/cm125-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-3/}
}
TY - JOUR
AU - Elói Medina Galego
TI - Spaces of compact operators on $C({\bf 2}^{\mathfrak m} \times [0,
\alpha])$ spaces
JO - Colloquium Mathematicum
PY - 2011
SP - 175
EP - 181
VL - 125
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-3/
DO - 10.4064/cm125-2-3
LA - en
ID - 10_4064_cm125_2_3
ER -
%0 Journal Article
%A Elói Medina Galego
%T Spaces of compact operators on $C({\bf 2}^{\mathfrak m} \times [0,
\alpha])$ spaces
%J Colloquium Mathematicum
%D 2011
%P 175-181
%V 125
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-3/
%R 10.4064/cm125-2-3
%G en
%F 10_4064_cm125_2_3
Elói Medina Galego. Spaces of compact operators on $C({\bf 2}^{\mathfrak m} \times [0,
\alpha])$ spaces. Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 175-181. doi: 10.4064/cm125-2-3
Cité par Sources :