Spaces of compact operators on $C({\bf 2}^{\mathfrak m} \times [0, \alpha])$ spaces
Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 175-181.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We classify, up to isomorphism, the spaces of compact operators ${\mathcal K}(E, F)$, where $E$ and $F$ are the Banach spaces of all continuous functions defined on the compact spaces ${\bf 2}^{\mathfrak m} \times [0, \alpha]$, the topological products of Cantor cubes ${\bf 2}^{\mathfrak m}$ and intervals of ordinal numbers $[0, \alpha]$.
DOI : 10.4064/cm125-2-3
Keywords: classify isomorphism spaces compact operators mathcal where banach spaces continuous functions defined compact spaces mathfrak times alpha topological products cantor cubes mathfrak intervals ordinal numbers alpha

Elói Medina Galego 1

1 Department of Mathematics University of São Paulo São Paulo, Brazil 05508-090
@article{10_4064_cm125_2_3,
     author = {El\'oi Medina Galego},
     title = {Spaces of compact operators on $C({\bf 2}^{\mathfrak m} \times [0,
\alpha])$ spaces},
     journal = {Colloquium Mathematicum},
     pages = {175--181},
     publisher = {mathdoc},
     volume = {125},
     number = {2},
     year = {2011},
     doi = {10.4064/cm125-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-3/}
}
TY  - JOUR
AU  - Elói Medina Galego
TI  - Spaces of compact operators on $C({\bf 2}^{\mathfrak m} \times [0,
\alpha])$ spaces
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 175
EP  - 181
VL  - 125
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-3/
DO  - 10.4064/cm125-2-3
LA  - en
ID  - 10_4064_cm125_2_3
ER  - 
%0 Journal Article
%A Elói Medina Galego
%T Spaces of compact operators on $C({\bf 2}^{\mathfrak m} \times [0,
\alpha])$ spaces
%J Colloquium Mathematicum
%D 2011
%P 175-181
%V 125
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-3/
%R 10.4064/cm125-2-3
%G en
%F 10_4064_cm125_2_3
Elói Medina Galego. Spaces of compact operators on $C({\bf 2}^{\mathfrak m} \times [0,
\alpha])$ spaces. Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 175-181. doi : 10.4064/cm125-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-3/

Cité par Sources :