Divergent solutions to the 5D Hartree equations
Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 255-287
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the Cauchy problem for the focusing Hartree equation
$iu_{t}+\varDelta u+(|\cdot|^{-3}\ast|u|^{2})u=0$ in $\mathbb{R}^{5}$
with initial data in $H^1$, and study the divergence property of
infinite-variance and nonradial
solutions. For the ground state
solution of $-Q+\varDelta Q+(|\cdot|^{-3}\ast|Q|^{2})Q=0 $ in $
\mathbb{R}^{5}$, we prove that if $u_{0}\in H^{1}$ satisfies
$M(u_0) E(u_0) M(Q) E(Q)$ and
$\|\nabla u_{0}\|_{2}\|u_{0}\|_{2} >\|\nabla Q\|_{2}\|Q\|_{2} ,$
then the corresponding solution $u(t)$ either blows up in finite
forward time, or exists globally for positive time and there exists
a time sequence $t_{n}\rightarrow\infty$ such that $\|\nabla
u(t_{n})\|_{2}\rightarrow\infty.$ A similar result holds for
negative time.
Mots-clés :
consider cauchy problem focusing hartree equation vardelta cdot ast mathbb initial study divergence property infinite variance nonradial solutions ground state solution q vardelta cdot ast mathbb prove satisfies nabla nabla corresponding solution either blows finite forward time exists globally positive time there exists time sequence rightarrow infty nabla rightarrow infty similar result holds negative time
Affiliations des auteurs :
Daomin Cao 1 ; Qing Guo 1
@article{10_4064_cm125_2_10,
author = {Daomin Cao and Qing Guo},
title = {Divergent solutions to the {5D} {Hartree} equations},
journal = {Colloquium Mathematicum},
pages = {255--287},
year = {2011},
volume = {125},
number = {2},
doi = {10.4064/cm125-2-10},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-10/}
}
Daomin Cao; Qing Guo. Divergent solutions to the 5D Hartree equations. Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 255-287. doi: 10.4064/cm125-2-10
Cité par Sources :