Divergent solutions to the 5D Hartree equations
Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 255-287.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the Cauchy problem for the focusing Hartree equation $iu_{t}+\varDelta u+(|\cdot|^{-3}\ast|u|^{2})u=0$ in $\mathbb{R}^{5}$ with initial data in $H^1$, and study the divergence property of infinite-variance and nonradial solutions. For the ground state solution of $-Q+\varDelta Q+(|\cdot|^{-3}\ast|Q|^{2})Q=0 $ in $ \mathbb{R}^{5}$, we prove that if $u_{0}\in H^{1}$ satisfies $M(u_0) E(u_0) M(Q) E(Q)$ and $\|\nabla u_{0}\|_{2}\|u_{0}\|_{2} >\|\nabla Q\|_{2}\|Q\|_{2} ,$ then the corresponding solution $u(t)$ either blows up in finite forward time, or exists globally for positive time and there exists a time sequence $t_{n}\rightarrow\infty$ such that $\|\nabla u(t_{n})\|_{2}\rightarrow\infty.$ A similar result holds for negative time.
DOI : 10.4064/cm125-2-10
Mots-clés : consider cauchy problem focusing hartree equation vardelta cdot ast mathbb initial study divergence property infinite variance nonradial solutions ground state solution q vardelta cdot ast mathbb prove satisfies nabla nabla corresponding solution either blows finite forward time exists globally positive time there exists time sequence rightarrow infty nabla rightarrow infty similar result holds negative time

Daomin Cao 1 ; Qing Guo 1

1 Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100190, P.R. China
@article{10_4064_cm125_2_10,
     author = {Daomin Cao and Qing Guo},
     title = {Divergent  solutions to the {5D} {Hartree} equations},
     journal = {Colloquium Mathematicum},
     pages = {255--287},
     publisher = {mathdoc},
     volume = {125},
     number = {2},
     year = {2011},
     doi = {10.4064/cm125-2-10},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-10/}
}
TY  - JOUR
AU  - Daomin Cao
AU  - Qing Guo
TI  - Divergent  solutions to the 5D Hartree equations
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 255
EP  - 287
VL  - 125
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-10/
DO  - 10.4064/cm125-2-10
LA  - fr
ID  - 10_4064_cm125_2_10
ER  - 
%0 Journal Article
%A Daomin Cao
%A Qing Guo
%T Divergent  solutions to the 5D Hartree equations
%J Colloquium Mathematicum
%D 2011
%P 255-287
%V 125
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-10/
%R 10.4064/cm125-2-10
%G fr
%F 10_4064_cm125_2_10
Daomin Cao; Qing Guo. Divergent  solutions to the 5D Hartree equations. Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 255-287. doi : 10.4064/cm125-2-10. http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-10/

Cité par Sources :