A free group of piecewise linear transformations
Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 141-146
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the following conjecture of J. Mycielski: There exists a free nonabelian group of piecewise linear, orientation and area preserving transformations which acts on the punctured disk $\{(x,y) \in{ \mathbb{R}^{2}} : 0 x^{2}+y^{2} 1\}$ without fixed points.
Keywords:
prove following conjecture mycielski there exists nonabelian group piecewise linear orientation area preserving transformations which acts punctured disk mathbb without fixed points
Affiliations des auteurs :
Grzegorz Tomkowicz 1
@article{10_4064_cm125_2_1,
author = {Grzegorz Tomkowicz},
title = {A free group of piecewise linear transformations},
journal = {Colloquium Mathematicum},
pages = {141--146},
publisher = {mathdoc},
volume = {125},
number = {2},
year = {2011},
doi = {10.4064/cm125-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-1/}
}
Grzegorz Tomkowicz. A free group of piecewise linear transformations. Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 141-146. doi: 10.4064/cm125-2-1
Cité par Sources :