A free group of piecewise linear transformations
Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 141-146.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the following conjecture of J. Mycielski: There exists a free nonabelian group of piecewise linear, orientation and area preserving transformations which acts on the punctured disk $\{(x,y) \in{ \mathbb{R}^{2}} : 0 x^{2}+y^{2} 1\}$ without fixed points.
DOI : 10.4064/cm125-2-1
Keywords: prove following conjecture mycielski there exists nonabelian group piecewise linear orientation area preserving transformations which acts punctured disk mathbb without fixed points

Grzegorz Tomkowicz 1

1 Centrum Edukacji $G^2$ Moniuszki 9 41-902 Bytom, Poland
@article{10_4064_cm125_2_1,
     author = {Grzegorz Tomkowicz},
     title = {A free group of piecewise linear transformations},
     journal = {Colloquium Mathematicum},
     pages = {141--146},
     publisher = {mathdoc},
     volume = {125},
     number = {2},
     year = {2011},
     doi = {10.4064/cm125-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-1/}
}
TY  - JOUR
AU  - Grzegorz Tomkowicz
TI  - A free group of piecewise linear transformations
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 141
EP  - 146
VL  - 125
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-1/
DO  - 10.4064/cm125-2-1
LA  - en
ID  - 10_4064_cm125_2_1
ER  - 
%0 Journal Article
%A Grzegorz Tomkowicz
%T A free group of piecewise linear transformations
%J Colloquium Mathematicum
%D 2011
%P 141-146
%V 125
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-1/
%R 10.4064/cm125-2-1
%G en
%F 10_4064_cm125_2_1
Grzegorz Tomkowicz. A free group of piecewise linear transformations. Colloquium Mathematicum, Tome 125 (2011) no. 2, pp. 141-146. doi : 10.4064/cm125-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm125-2-1/

Cité par Sources :