Carmichael numbers composed of primes from a Beatty sequence
Colloquium Mathematicum, Tome 125 (2011) no. 1, pp. 129-137.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\alpha,\beta\in\mathbb R$ be fixed with $\alpha>1$, and suppose that $\alpha$ is irrational and of finite type. We show that there are infinitely many Carmichael numbers composed solely of primes from the non-homogeneous Beatty sequence $\mathscr B_{\alpha,\beta}=(\lfloor{\alpha n+\beta}\rfloor)_{n=1}^\infty$. We conjecture that the same result holds true when $\alpha$ is an irrational number of infinite type.
DOI : 10.4064/cm125-1-9
Keywords: alpha beta mathbb fixed alpha suppose alpha irrational finite type there infinitely many carmichael numbers composed solely primes non homogeneous beatty sequence mathscr alpha beta lfloor alpha beta rfloor infty conjecture result holds alpha irrational number infinite type

William D. Banks 1 ; Aaron M. Yeager 2

1 Department of Mathematics University of Missouri Columbia, MO 65211, U.S.A.
2 Department of Mathematics University of Missouri Columbia, MO 65211, U.S.A. \emailaut2{amydm6@mail.missouri.edu
@article{10_4064_cm125_1_9,
     author = {William D. Banks and Aaron M. Yeager},
     title = {Carmichael numbers composed of primes from a {Beatty} sequence},
     journal = {Colloquium Mathematicum},
     pages = {129--137},
     publisher = {mathdoc},
     volume = {125},
     number = {1},
     year = {2011},
     doi = {10.4064/cm125-1-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-9/}
}
TY  - JOUR
AU  - William D. Banks
AU  - Aaron M. Yeager
TI  - Carmichael numbers composed of primes from a Beatty sequence
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 129
EP  - 137
VL  - 125
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-9/
DO  - 10.4064/cm125-1-9
LA  - en
ID  - 10_4064_cm125_1_9
ER  - 
%0 Journal Article
%A William D. Banks
%A Aaron M. Yeager
%T Carmichael numbers composed of primes from a Beatty sequence
%J Colloquium Mathematicum
%D 2011
%P 129-137
%V 125
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-9/
%R 10.4064/cm125-1-9
%G en
%F 10_4064_cm125_1_9
William D. Banks; Aaron M. Yeager. Carmichael numbers composed of primes from a Beatty sequence. Colloquium Mathematicum, Tome 125 (2011) no. 1, pp. 129-137. doi : 10.4064/cm125-1-9. http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-9/

Cité par Sources :