Carmichael numbers composed of primes from a Beatty sequence
Colloquium Mathematicum, Tome 125 (2011) no. 1, pp. 129-137
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\alpha,\beta\in\mathbb R$ be fixed with $\alpha>1$, and
suppose that $\alpha$ is irrational and of finite type.
We show that there are infinitely many Carmichael numbers
composed solely of primes from the non-homogeneous Beatty sequence
$\mathscr B_{\alpha,\beta}=(\lfloor{\alpha n+\beta}\rfloor)_{n=1}^\infty$.
We conjecture that the same result holds true when $\alpha$ is an
irrational number of infinite type.
Keywords:
alpha beta mathbb fixed alpha suppose alpha irrational finite type there infinitely many carmichael numbers composed solely primes non homogeneous beatty sequence mathscr alpha beta lfloor alpha beta rfloor infty conjecture result holds alpha irrational number infinite type
Affiliations des auteurs :
William D. Banks 1 ; Aaron M. Yeager 2
@article{10_4064_cm125_1_9,
author = {William D. Banks and Aaron M. Yeager},
title = {Carmichael numbers composed of primes from a {Beatty} sequence},
journal = {Colloquium Mathematicum},
pages = {129--137},
publisher = {mathdoc},
volume = {125},
number = {1},
year = {2011},
doi = {10.4064/cm125-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-9/}
}
TY - JOUR AU - William D. Banks AU - Aaron M. Yeager TI - Carmichael numbers composed of primes from a Beatty sequence JO - Colloquium Mathematicum PY - 2011 SP - 129 EP - 137 VL - 125 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-9/ DO - 10.4064/cm125-1-9 LA - en ID - 10_4064_cm125_1_9 ER -
William D. Banks; Aaron M. Yeager. Carmichael numbers composed of primes from a Beatty sequence. Colloquium Mathematicum, Tome 125 (2011) no. 1, pp. 129-137. doi: 10.4064/cm125-1-9
Cité par Sources :