Stochastic dynamical systems with weak contractivity properties
II. Iteration of Lipschitz mappings
Colloquium Mathematicum, Tome 125 (2011) no. 1, pp. 55-81
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In this continuation of the preceding paper (Part I),
we consider a sequence $(F_n)_{n\ge 0}$ of
i.i.d. random Lipschitz mappings $\mathsf X \to \mathsf X$, where $\mathsf X$ is a proper metric
space. We investigate existence and uniqueness of invariant measures, as well as
recurrence and ergodicity of the induced stochastic dynamical system (SDS)
$X_n^x = F_n \circ \dots \circ F_1(x)$ starting at
$x \in \mathsf X$.
The main results concern the case when the associated Lipschitz constants
are log-centered. Principal tools are local contractivity, as considered in
detail in Part I, the Chacon–Ornstein theorem and
a hyperbolic extension of the space $\mathsf X$ as well as the process $(X_n^x)$.The results are applied to a class of examples, namely, the reflected affine
stochastic recursion
given by $X_0^x=x \ge 0$ and $X_n^x = |A_nX_{n-1}^x - B_n|$, where
$(A_n,B_n)$ is a sequence of two-dimensional
i.i.d. random variables with values in $\mathbb R^+_* \times \mathbb R^+_*$.
Keywords:
continuation preceding paper part nbsp consider sequence random lipschitz mappings mathsf mathsf where mathsf proper metric space investigate existence uniqueness invariant measures recurrence ergodicity induced stochastic dynamical system sds circ dots circ starting mathsf main results concern associated lipschitz constants log centered principal tools local contractivity considered detail part nbsp chacon ornstein theorem hyperbolic extension space mathsf process results applied class examples namely reflected affine stochastic recursion given n where n sequence two dimensional random variables values mathbb * times mathbb *
Affiliations des auteurs :
Marc Peigné 1 ; Wolfgang Woess 2
@article{10_4064_cm125_1_5,
author = {Marc Peign\'e and Wolfgang Woess},
title = {Stochastic dynamical systems with weak contractivity {properties
II.} {Iteration} of {Lipschitz} mappings},
journal = {Colloquium Mathematicum},
pages = {55--81},
publisher = {mathdoc},
volume = {125},
number = {1},
year = {2011},
doi = {10.4064/cm125-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-5/}
}
TY - JOUR AU - Marc Peigné AU - Wolfgang Woess TI - Stochastic dynamical systems with weak contractivity properties II. Iteration of Lipschitz mappings JO - Colloquium Mathematicum PY - 2011 SP - 55 EP - 81 VL - 125 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-5/ DO - 10.4064/cm125-1-5 LA - en ID - 10_4064_cm125_1_5 ER -
%0 Journal Article %A Marc Peigné %A Wolfgang Woess %T Stochastic dynamical systems with weak contractivity properties II. Iteration of Lipschitz mappings %J Colloquium Mathematicum %D 2011 %P 55-81 %V 125 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-5/ %R 10.4064/cm125-1-5 %G en %F 10_4064_cm125_1_5
Marc Peigné; Wolfgang Woess. Stochastic dynamical systems with weak contractivity properties II. Iteration of Lipschitz mappings. Colloquium Mathematicum, Tome 125 (2011) no. 1, pp. 55-81. doi: 10.4064/cm125-1-5
Cité par Sources :