Stochastic dynamical systems with weak contractivity properties I. Strong and local contractivity
Colloquium Mathematicum, Tome 125 (2011) no. 1, pp. 31-54.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Consider a proper metric space $\mathsf{X}$ and a sequence $(F_n)_{n\ge 0}$ of i.i.d. random continuous mappings $\mathsf{X} \to \mathsf{X}$. It induces the stochastic dynamical system (SDS) $X_n^x = F_n \circ \dots \circ F_1(x)$ starting at $x \in \mathsf{X}$. In this and the subsequent paper, we study existence and uniqueness of invariant measures, as well as recurrence and ergodicity of this process.In the present first part, we elaborate, improve and complete the unpublished work of Martin Benda on local contractivity, which merits publicity and provides an important tool for studying stochastic iterations. We consider the case when the $F_n$ are contractions and, in particular, discuss recurrence criteria and their sharpness for the reflected random walk.
DOI : 10.4064/cm125-1-4
Keywords: consider proper metric space mathsf sequence random continuous mappings mathsf mathsf induces stochastic dynamical system sds circ dots circ starting mathsf subsequent paper study existence uniqueness invariant measures recurrence ergodicity process present first part elaborate improve complete unpublished work martin benda local contractivity which merits publicity provides important tool studying stochastic iterations consider contractions particular discuss recurrence criteria their sharpness reflected random walk

Marc Peigné 1 ; Wolfgang Woess 2

1 Laboratoire de Mathématiques et Physique Théorique Université François Rabelais Tours Fédération Denis Poisson – CNRS Parc de Grandmont 37200 Tours, France
2 Institut für Mathematische Strukturtheorie (Math C) Technische Universität Graz Steyrergasse 30, A-8010 Graz, Austria
@article{10_4064_cm125_1_4,
     author = {Marc Peign\'e and Wolfgang Woess},
     title = {Stochastic dynamical systems with weak contractivity {properties
I.} {Strong} and local contractivity},
     journal = {Colloquium Mathematicum},
     pages = {31--54},
     publisher = {mathdoc},
     volume = {125},
     number = {1},
     year = {2011},
     doi = {10.4064/cm125-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-4/}
}
TY  - JOUR
AU  - Marc Peigné
AU  - Wolfgang Woess
TI  - Stochastic dynamical systems with weak contractivity properties
I. Strong and local contractivity
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 31
EP  - 54
VL  - 125
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-4/
DO  - 10.4064/cm125-1-4
LA  - en
ID  - 10_4064_cm125_1_4
ER  - 
%0 Journal Article
%A Marc Peigné
%A Wolfgang Woess
%T Stochastic dynamical systems with weak contractivity properties
I. Strong and local contractivity
%J Colloquium Mathematicum
%D 2011
%P 31-54
%V 125
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-4/
%R 10.4064/cm125-1-4
%G en
%F 10_4064_cm125_1_4
Marc Peigné; Wolfgang Woess. Stochastic dynamical systems with weak contractivity properties
I. Strong and local contractivity. Colloquium Mathematicum, Tome 125 (2011) no. 1, pp. 31-54. doi : 10.4064/cm125-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-4/

Cité par Sources :