Corrigendum to “Representatons of multivariate polynomials by sums of univariate polynomials in linear forms” (Colloq. Math. 112 (2008), 201–233)
Colloquium Mathematicum, Tome 125 (2011) no. 1, p. 139 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

DOI : 10.4064/cm125-1-10

A. Białynicki-Birula 1 ; A. Schinzel 2

1 Department of Mathematics University of Warsaw Banacha 2 02-097 Warszawa, Poland
2 Institute of Mathematics Polish Academy of Sciences P.O. Box 21 00-956 Warszawa, Poland
@article{10_4064_cm125_1_10,
     author = {A. Bia{\l}ynicki-Birula and A. Schinzel},
     title = {Corrigendum to {{\textquotedblleft}Representatons} of multivariate polynomials by sums of univariate polynomials in linear forms{\textquotedblright} {(Colloq.} {Math.} 112 (2008), 201{\textendash}233)},
     journal = {Colloquium Mathematicum},
     pages = {139--139},
     year = {2011},
     volume = {125},
     number = {1},
     doi = {10.4064/cm125-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-10/}
}
TY  - JOUR
AU  - A. Białynicki-Birula
AU  - A. Schinzel
TI  - Corrigendum to “Representatons of multivariate polynomials by sums of univariate polynomials in linear forms” (Colloq. Math. 112 (2008), 201–233)
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 139
EP  - 139
VL  - 125
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-10/
DO  - 10.4064/cm125-1-10
LA  - en
ID  - 10_4064_cm125_1_10
ER  - 
%0 Journal Article
%A A. Białynicki-Birula
%A A. Schinzel
%T Corrigendum to “Representatons of multivariate polynomials by sums of univariate polynomials in linear forms” (Colloq. Math. 112 (2008), 201–233)
%J Colloquium Mathematicum
%D 2011
%P 139-139
%V 125
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/cm125-1-10/
%R 10.4064/cm125-1-10
%G en
%F 10_4064_cm125_1_10
A. Białynicki-Birula; A. Schinzel. Corrigendum to “Representatons of multivariate polynomials by sums of univariate polynomials in linear forms” (Colloq. Math. 112 (2008), 201–233). Colloquium Mathematicum, Tome 125 (2011) no. 1, p. 139. doi: 10.4064/cm125-1-10

Cité par Sources :