On the stable equivalence problem for $k[x,y]$
Colloquium Mathematicum, Tome 124 (2011) no. 2, pp. 247-253.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

L. Makar-Limanov, P. van Rossum, V. Shpilrain and J.-T. Yu solved the stable equivalence problem for the polynomial ring $k[x,y]$ when $k$ is a field of characteristic 0. In this note we give an affirmative solution for an arbitrary field $k$.
DOI : 10.4064/cm124-2-9
Keywords: makar limanov van rossum shpilrain t solved stable equivalence problem polynomial ring field characteristic nbsp note affirmative solution arbitrary field

Robert Dryło 1

1 Instytut Matematyczny PAN Śniadeckich 8 00-956 Warszawa, Poland and Instytut Matematyki Uniwersytet Humanistyczno-Przyrodniczy Jana Kochanowskiego Świętokrzyska 15 25-406 Kielce, Poland
@article{10_4064_cm124_2_9,
     author = {Robert Dry{\l}o},
     title = {On the stable equivalence problem for $k[x,y]$},
     journal = {Colloquium Mathematicum},
     pages = {247--253},
     publisher = {mathdoc},
     volume = {124},
     number = {2},
     year = {2011},
     doi = {10.4064/cm124-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm124-2-9/}
}
TY  - JOUR
AU  - Robert Dryło
TI  - On the stable equivalence problem for $k[x,y]$
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 247
EP  - 253
VL  - 124
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm124-2-9/
DO  - 10.4064/cm124-2-9
LA  - en
ID  - 10_4064_cm124_2_9
ER  - 
%0 Journal Article
%A Robert Dryło
%T On the stable equivalence problem for $k[x,y]$
%J Colloquium Mathematicum
%D 2011
%P 247-253
%V 124
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm124-2-9/
%R 10.4064/cm124-2-9
%G en
%F 10_4064_cm124_2_9
Robert Dryło. On the stable equivalence problem for $k[x,y]$. Colloquium Mathematicum, Tome 124 (2011) no. 2, pp. 247-253. doi : 10.4064/cm124-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm124-2-9/

Cité par Sources :