On the stable equivalence problem for $k[x,y]$
Colloquium Mathematicum, Tome 124 (2011) no. 2, pp. 247-253
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
L. Makar-Limanov, P. van Rossum, V. Shpilrain and J.-T. Yu solved the stable equivalence problem for the polynomial ring $k[x,y]$ when $k$ is a field of characteristic 0. In this note we give an affirmative solution for an arbitrary field $k$.
Keywords:
makar limanov van rossum shpilrain t solved stable equivalence problem polynomial ring field characteristic nbsp note affirmative solution arbitrary field
Affiliations des auteurs :
Robert Dryło 1
@article{10_4064_cm124_2_9,
author = {Robert Dry{\l}o},
title = {On the stable equivalence problem for $k[x,y]$},
journal = {Colloquium Mathematicum},
pages = {247--253},
publisher = {mathdoc},
volume = {124},
number = {2},
year = {2011},
doi = {10.4064/cm124-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm124-2-9/}
}
Robert Dryło. On the stable equivalence problem for $k[x,y]$. Colloquium Mathematicum, Tome 124 (2011) no. 2, pp. 247-253. doi: 10.4064/cm124-2-9
Cité par Sources :