Poisson's equation and characterizations
of reflexivity of Banach spaces
Colloquium Mathematicum, Tome 124 (2011) no. 2, pp. 225-235
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a Banach space with a basis. We prove that $X$ is reflexive if
and only if every power-bounded linear operator $T$ satisfies Browder's equality
$$
\Big\{ x\in X: \sup_n \Big\| \sum_{k=1}^n T^k x \Big\| \infty \Big\}
= (I-T)X.
$$
We then deduce that $X$ (with a basis) is reflexive if and only if
every strongly continuous bounded semigroup $\{T_t: t\ge 0\}$
with generator $A$ satisfies
$$
AX= \bigg\{x\in X:\sup_{s>0} \bigg\|\int_0^s\, T_tx\,dt \bigg\|\infty \bigg\}.
$$
The range $(I-T)X$ (respectively, $AX$ for continuous time)
is the space of $x \in X$ for which Poisson's equation $(I-T)y=x$
($Ay=x$ in continuous time) has a solution $y \in X$;
the above equalities for the ranges express sufficient
(and obviously necessary) conditions for solvability of Poisson's equation.
Keywords:
banach space basis prove reflexive only every power bounded linear operator satisfies browders equality sup sum x infty i t deduce basis reflexive only every strongly continuous bounded semigroup generator satisfies bigg sup bigg int bigg infty bigg range i t respectively continuous time space which poissons equation i t continuous time has solution above equalities ranges express sufficient obviously necessary conditions solvability poissons equation
Affiliations des auteurs :
Vladimir P. Fonf 1 ; Michael Lin 1 ; Przemysław Wojtaszczyk 2
@article{10_4064_cm124_2_7,
author = {Vladimir P. Fonf and Michael Lin and Przemys{\l}aw Wojtaszczyk},
title = {Poisson's equation and characterizations
of reflexivity of {Banach} spaces},
journal = {Colloquium Mathematicum},
pages = {225--235},
publisher = {mathdoc},
volume = {124},
number = {2},
year = {2011},
doi = {10.4064/cm124-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm124-2-7/}
}
TY - JOUR AU - Vladimir P. Fonf AU - Michael Lin AU - Przemysław Wojtaszczyk TI - Poisson's equation and characterizations of reflexivity of Banach spaces JO - Colloquium Mathematicum PY - 2011 SP - 225 EP - 235 VL - 124 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm124-2-7/ DO - 10.4064/cm124-2-7 LA - en ID - 10_4064_cm124_2_7 ER -
%0 Journal Article %A Vladimir P. Fonf %A Michael Lin %A Przemysław Wojtaszczyk %T Poisson's equation and characterizations of reflexivity of Banach spaces %J Colloquium Mathematicum %D 2011 %P 225-235 %V 124 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm124-2-7/ %R 10.4064/cm124-2-7 %G en %F 10_4064_cm124_2_7
Vladimir P. Fonf; Michael Lin; Przemysław Wojtaszczyk. Poisson's equation and characterizations of reflexivity of Banach spaces. Colloquium Mathematicum, Tome 124 (2011) no. 2, pp. 225-235. doi: 10.4064/cm124-2-7
Cité par Sources :