Poisson's equation and characterizations of reflexivity of Banach spaces
Colloquium Mathematicum, Tome 124 (2011) no. 2, pp. 225-235.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a Banach space with a basis. We prove that $X$ is reflexive if and only if every power-bounded linear operator $T$ satisfies Browder's equality $$ \Big\{ x\in X: \sup_n \Big\| \sum_{k=1}^n T^k x \Big\| \infty \Big\} = (I-T)X. $$ We then deduce that $X$ (with a basis) is reflexive if and only if every strongly continuous bounded semigroup $\{T_t: t\ge 0\}$ with generator $A$ satisfies $$ AX= \bigg\{x\in X:\sup_{s>0} \bigg\|\int_0^s\, T_tx\,dt \bigg\|\infty \bigg\}. $$ The range $(I-T)X$ (respectively, $AX$ for continuous time) is the space of $x \in X$ for which Poisson's equation $(I-T)y=x$ ($Ay=x$ in continuous time) has a solution $y \in X$; the above equalities for the ranges express sufficient (and obviously necessary) conditions for solvability of Poisson's equation.
DOI : 10.4064/cm124-2-7
Keywords: banach space basis prove reflexive only every power bounded linear operator satisfies browders equality sup sum x infty i t deduce basis reflexive only every strongly continuous bounded semigroup generator satisfies bigg sup bigg int bigg infty bigg range i t respectively continuous time space which poissons equation i t continuous time has solution above equalities ranges express sufficient obviously necessary conditions solvability poissons equation

Vladimir P. Fonf 1 ; Michael Lin 1 ; Przemysław Wojtaszczyk 2

1 Ben-Gurion University of the Negev Beer Sheva, Israel
2 Department of Mathematics University of Warsaw Banacha 2 02-097 Warszawa, Poland
@article{10_4064_cm124_2_7,
     author = {Vladimir P. Fonf and Michael Lin and Przemys{\l}aw Wojtaszczyk},
     title = {Poisson's equation and characterizations
 of reflexivity of {Banach} spaces},
     journal = {Colloquium Mathematicum},
     pages = {225--235},
     publisher = {mathdoc},
     volume = {124},
     number = {2},
     year = {2011},
     doi = {10.4064/cm124-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm124-2-7/}
}
TY  - JOUR
AU  - Vladimir P. Fonf
AU  - Michael Lin
AU  - Przemysław Wojtaszczyk
TI  - Poisson's equation and characterizations
 of reflexivity of Banach spaces
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 225
EP  - 235
VL  - 124
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm124-2-7/
DO  - 10.4064/cm124-2-7
LA  - en
ID  - 10_4064_cm124_2_7
ER  - 
%0 Journal Article
%A Vladimir P. Fonf
%A Michael Lin
%A Przemysław Wojtaszczyk
%T Poisson's equation and characterizations
 of reflexivity of Banach spaces
%J Colloquium Mathematicum
%D 2011
%P 225-235
%V 124
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm124-2-7/
%R 10.4064/cm124-2-7
%G en
%F 10_4064_cm124_2_7
Vladimir P. Fonf; Michael Lin; Przemysław Wojtaszczyk. Poisson's equation and characterizations
 of reflexivity of Banach spaces. Colloquium Mathematicum, Tome 124 (2011) no. 2, pp. 225-235. doi : 10.4064/cm124-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm124-2-7/

Cité par Sources :