The Herz–Schur multiplier norm of sets satisfying the Leinert condition
Colloquium Mathematicum, Tome 124 (2011) no. 2, pp. 255-274
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is well known that in a free group $\def\F{{\mathbb F}}\F$, one has $\def\F{{\mathbb F}}\|\chi_E\|_{M_{cb}A(\F)}\leq 2$, where $E$ is the set of
all the generators.
We show
that the (completely) bounded multiplier norm of any set satisfying the Leinert condition
depends only on its cardinality. Consequently, based on a result of Wysoczański,
we obtain a formula for $\def\F{{\mathbb F}}\|\chi_E\|_{M_{cb}A(\F)}$.
Keywords:
known group def mathbb has def mathbb chi leq where set generators completely bounded multiplier norm set satisfying leinert condition depends only its cardinality consequently based result wysocza ski obtain formula def mathbb chi
Affiliations des auteurs :
Éric Ricard 1 ; Ana-Maria Stan 2
@article{10_4064_cm124_2_10,
author = {\'Eric Ricard and Ana-Maria Stan},
title = {The {Herz{\textendash}Schur} multiplier norm of sets satisfying the {Leinert} condition},
journal = {Colloquium Mathematicum},
pages = {255--274},
year = {2011},
volume = {124},
number = {2},
doi = {10.4064/cm124-2-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm124-2-10/}
}
TY - JOUR AU - Éric Ricard AU - Ana-Maria Stan TI - The Herz–Schur multiplier norm of sets satisfying the Leinert condition JO - Colloquium Mathematicum PY - 2011 SP - 255 EP - 274 VL - 124 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm124-2-10/ DO - 10.4064/cm124-2-10 LA - en ID - 10_4064_cm124_2_10 ER -
Éric Ricard; Ana-Maria Stan. The Herz–Schur multiplier norm of sets satisfying the Leinert condition. Colloquium Mathematicum, Tome 124 (2011) no. 2, pp. 255-274. doi: 10.4064/cm124-2-10
Cité par Sources :