Fleury's spanning dimension and chain conditions on non-essential elements in modular lattices
Colloquium Mathematicum, Tome 124 (2011) no. 1, pp. 133-144
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Based on a lattice-theoretic approach, we give a complete characterization of modules with Fleury's spanning dimension. An example of a non-Artinian, non-hollow module satisfying this finiteness condition is constructed. Furthermore we introduce and characterize the dual notion of Fleury's spanning dimension.
Keywords:
based lattice theoretic approach complete characterization modules fleurys spanning dimension example non artinian non hollow module satisfying finiteness condition constructed furthermore introduce characterize dual notion fleurys spanning dimension
Affiliations des auteurs :
Christian Lomp 1 ; A. Çiğdem Özcan 2
@article{10_4064_cm124_1_9,
author = {Christian Lomp and A. \c{C}i\u{g}dem \"Ozcan},
title = {Fleury's spanning dimension and chain conditions on non-essential elements in modular lattices},
journal = {Colloquium Mathematicum},
pages = {133--144},
year = {2011},
volume = {124},
number = {1},
doi = {10.4064/cm124-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm124-1-9/}
}
TY - JOUR AU - Christian Lomp AU - A. Çiğdem Özcan TI - Fleury's spanning dimension and chain conditions on non-essential elements in modular lattices JO - Colloquium Mathematicum PY - 2011 SP - 133 EP - 144 VL - 124 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm124-1-9/ DO - 10.4064/cm124-1-9 LA - en ID - 10_4064_cm124_1_9 ER -
%0 Journal Article %A Christian Lomp %A A. Çiğdem Özcan %T Fleury's spanning dimension and chain conditions on non-essential elements in modular lattices %J Colloquium Mathematicum %D 2011 %P 133-144 %V 124 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/cm124-1-9/ %R 10.4064/cm124-1-9 %G en %F 10_4064_cm124_1_9
Christian Lomp; A. Çiğdem Özcan. Fleury's spanning dimension and chain conditions on non-essential elements in modular lattices. Colloquium Mathematicum, Tome 124 (2011) no. 1, pp. 133-144. doi: 10.4064/cm124-1-9
Cité par Sources :