Real hypersurfaces in a nonflat complex space form and their almost contact metric structures
Colloquium Mathematicum, Tome 124 (2011) no. 1, pp. 117-131.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We characterize homogeneous real hypersurfaces of types $({\rm A}_0)$, $({\rm A}_1)$ and (B) in a complex projective space or a complex hyperbolic space.
DOI : 10.4064/cm124-1-8
Keywords: characterize homogeneous real hypersurfaces types complex projective space complex hyperbolic space

Young Ho Kim 1 ; Sadahiro Maeda 2

1 Department of Mathematics Kyungpook National University Taegu 702-701, Korea
2 Department of Mathematics Saga University 1 Honzyo, Saga 840-8502, Japan
@article{10_4064_cm124_1_8,
     author = {Young Ho Kim and Sadahiro Maeda},
     title = {Real hypersurfaces in a nonflat complex space form and their almost contact metric structures},
     journal = {Colloquium Mathematicum},
     pages = {117--131},
     publisher = {mathdoc},
     volume = {124},
     number = {1},
     year = {2011},
     doi = {10.4064/cm124-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm124-1-8/}
}
TY  - JOUR
AU  - Young Ho Kim
AU  - Sadahiro Maeda
TI  - Real hypersurfaces in a nonflat complex space form and their almost contact metric structures
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 117
EP  - 131
VL  - 124
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm124-1-8/
DO  - 10.4064/cm124-1-8
LA  - en
ID  - 10_4064_cm124_1_8
ER  - 
%0 Journal Article
%A Young Ho Kim
%A Sadahiro Maeda
%T Real hypersurfaces in a nonflat complex space form and their almost contact metric structures
%J Colloquium Mathematicum
%D 2011
%P 117-131
%V 124
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm124-1-8/
%R 10.4064/cm124-1-8
%G en
%F 10_4064_cm124_1_8
Young Ho Kim; Sadahiro Maeda. Real hypersurfaces in a nonflat complex space form and their almost contact metric structures. Colloquium Mathematicum, Tome 124 (2011) no. 1, pp. 117-131. doi : 10.4064/cm124-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm124-1-8/

Cité par Sources :