Example of a mean ergodic $L^{1}$ operator
with the linear rate of growth
Colloquium Mathematicum, Tome 124 (2011) no. 1, pp. 15-22
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The rate of growth of an operator $T$ satisfying the mean ergodic theorem
(MET) cannot be faster than linear. It was recently shown (Kornfeld–Kosek, Colloq. Math. 98 (2003)) that for every
$\gamma>0,$ there are positive $L^{1}\left[ 0,1\right] $ operators $T$
satisfying MET with $\lim_{n\rightarrow\infty}\|T^{n}\|/n^{1-\gamma}=\infty.$ In the class of positive $L^{1}$ operators this is the most one can
hope for in the sense that for every such operator $T$, there exists a
$\gamma_{0}>0$ such that $\lim\sup\|T^{n}\|/n^{1-\gamma_{0}}=0.$ In
this note we construct an example of a nonpositive $L^{1}$ operator with the
highest possible rate of growth, that is, $\lim\sup_{n\rightarrow\infty}%
{\|T^{n}\|}/{n}>0$.
Keywords:
rate growth operator satisfying mean ergodic theorem met cannot faster linear recently shown kornfeld kosek colloq math every gamma there positive right operators satisfying met lim rightarrow infty gamma infty class positive operators hope sense every operator there exists gamma lim sup gamma note construct example nonpositive operator highest possible rate growth lim sup rightarrow infty
Affiliations des auteurs :
Wojciech Kosek  1
@article{10_4064_cm124_1_2,
author = {Wojciech Kosek},
title = {Example of a mean ergodic $L^{1}$ operator
with the linear rate of growth},
journal = {Colloquium Mathematicum},
pages = {15--22},
year = {2011},
volume = {124},
number = {1},
doi = {10.4064/cm124-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm124-1-2/}
}
Wojciech Kosek. Example of a mean ergodic $L^{1}$ operator
with the linear rate of growth. Colloquium Mathematicum, Tome 124 (2011) no. 1, pp. 15-22. doi: 10.4064/cm124-1-2
Cité par Sources :