Maps with dimensionally restricted fibers
Colloquium Mathematicum, Tome 123 (2011) no. 2, pp. 239-248
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if $f\colon X\to Y$ is a closed surjective map between
metric spaces such that every fiber $f^{-1}(y)$ belongs to a class
$\mathrm S$ of spaces, then there exists an $F_\sigma$-set $A\subset
X$ such that $A\in\mathrm S$ and $\dim f^{-1}(y)\setminus A=0$ for
all $y\in Y$. Here, $\mathrm S$ can be one of the following classes:
(i) $\{M:\mathop{\rm e\text{-}dim}\nolimits M\leq K\}$ for some $CW$-complex $K$;
(ii) $C$-spaces; (iii) weakly infinite-dimensional spaces. We also
establish that if $\mathrm S=\{M:\dim M\leq n\}$, then $\dim
f\bigtriangleup g\leq 0$ for almost all $g\in C(X,\mathbb I^{n+1})$.
Keywords:
prove colon closed surjective map between metric spaces every fiber belongs class mathrm spaces there exists sigma set subset mathrm dim setminus here mathrm following classes mathop text dim nolimits leq cw complex nbsp nbsp c spaces iii weakly infinite dimensional spaces establish mathrm dim leq dim bigtriangleup leq almost mathbb
Affiliations des auteurs :
Vesko Valov 1
@article{10_4064_cm123_2_8,
author = {Vesko Valov},
title = {Maps with dimensionally restricted fibers},
journal = {Colloquium Mathematicum},
pages = {239--248},
publisher = {mathdoc},
volume = {123},
number = {2},
year = {2011},
doi = {10.4064/cm123-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-8/}
}
Vesko Valov. Maps with dimensionally restricted fibers. Colloquium Mathematicum, Tome 123 (2011) no. 2, pp. 239-248. doi: 10.4064/cm123-2-8
Cité par Sources :