Maps with dimensionally restricted fibers
Colloquium Mathematicum, Tome 123 (2011) no. 2, pp. 239-248.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if $f\colon X\to Y$ is a closed surjective map between metric spaces such that every fiber $f^{-1}(y)$ belongs to a class $\mathrm S$ of spaces, then there exists an $F_\sigma$-set $A\subset X$ such that $A\in\mathrm S$ and $\dim f^{-1}(y)\setminus A=0$ for all $y\in Y$. Here, $\mathrm S$ can be one of the following classes: (i) $\{M:\mathop{\rm e\text{-}dim}\nolimits M\leq K\}$ for some $CW$-complex $K$; (ii) $C$-spaces; (iii) weakly infinite-dimensional spaces. We also establish that if $\mathrm S=\{M:\dim M\leq n\}$, then $\dim f\bigtriangleup g\leq 0$ for almost all $g\in C(X,\mathbb I^{n+1})$.
DOI : 10.4064/cm123-2-8
Keywords: prove colon closed surjective map between metric spaces every fiber belongs class mathrm spaces there exists sigma set subset mathrm dim setminus here mathrm following classes mathop text dim nolimits leq cw complex nbsp nbsp c spaces iii weakly infinite dimensional spaces establish mathrm dim leq dim bigtriangleup leq almost mathbb

Vesko Valov 1

1 Department of Computer Science and Mathematics Nipissing University 100 College Drive P.O. Box 5002 North Bay, ON, P1B 8L7, Canada
@article{10_4064_cm123_2_8,
     author = {Vesko Valov},
     title = {Maps with dimensionally restricted fibers},
     journal = {Colloquium Mathematicum},
     pages = {239--248},
     publisher = {mathdoc},
     volume = {123},
     number = {2},
     year = {2011},
     doi = {10.4064/cm123-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-8/}
}
TY  - JOUR
AU  - Vesko Valov
TI  - Maps with dimensionally restricted fibers
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 239
EP  - 248
VL  - 123
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-8/
DO  - 10.4064/cm123-2-8
LA  - en
ID  - 10_4064_cm123_2_8
ER  - 
%0 Journal Article
%A Vesko Valov
%T Maps with dimensionally restricted fibers
%J Colloquium Mathematicum
%D 2011
%P 239-248
%V 123
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-8/
%R 10.4064/cm123-2-8
%G en
%F 10_4064_cm123_2_8
Vesko Valov. Maps with dimensionally restricted fibers. Colloquium Mathematicum, Tome 123 (2011) no. 2, pp. 239-248. doi : 10.4064/cm123-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-8/

Cité par Sources :