A note on product structures on Hochschild homology of schemes
Colloquium Mathematicum, Tome 123 (2011) no. 2, pp. 233-238
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We extend the definition of Hochschild and cyclic homologies of a scheme over a commutative ring $k$ to define the Hochschild homologies ${\rm HH}_*(X/S)$ and cyclic homologies
${\rm HC}_*(X/S)$ of a scheme $X$ with respect to an arbitrary base scheme $S$. Our main purpose is to study product structures on the Hochschild homology groups ${\rm HH}_*(X/S)$. In particular, we show that ${\rm HH}_*(X/S)
=\bigoplus_{n\in \mathbb Z}{\rm HH}_n(X/S)$ carries the structure of a graded algebra.
Keywords:
extend definition hochschild cyclic homologies scheme commutative ring define hochschild homologies * cyclic homologies * scheme respect arbitrary base scheme main purpose study product structures hochschild homology groups * particular * bigoplus mathbb carries structure graded algebra
Affiliations des auteurs :
Abhishek Banerjee 1
@article{10_4064_cm123_2_7,
author = {Abhishek Banerjee},
title = {A note on product structures on {Hochschild} homology of schemes},
journal = {Colloquium Mathematicum},
pages = {233--238},
publisher = {mathdoc},
volume = {123},
number = {2},
year = {2011},
doi = {10.4064/cm123-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-7/}
}
TY - JOUR AU - Abhishek Banerjee TI - A note on product structures on Hochschild homology of schemes JO - Colloquium Mathematicum PY - 2011 SP - 233 EP - 238 VL - 123 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-7/ DO - 10.4064/cm123-2-7 LA - en ID - 10_4064_cm123_2_7 ER -
Abhishek Banerjee. A note on product structures on Hochschild homology of schemes. Colloquium Mathematicum, Tome 123 (2011) no. 2, pp. 233-238. doi: 10.4064/cm123-2-7
Cité par Sources :