Free powers of the free Poisson measure
Colloquium Mathematicum, Tome 123 (2011) no. 2, pp. 285-290.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We compute moments of the measures $(\mathbf{\varpi}^{\boxtimes p})^{\boxplus t}$, where $\varpi$ denotes the free Poisson law, and $\boxplus$ and $\boxtimes$ are the additive and multiplicative free convolutions. These moments are expressed in terms of the Fuss–Narayana numbers.
DOI : 10.4064/cm123-2-11
Keywords: compute moments measures mathbf varpi boxtimes boxplus where varpi denotes poisson law boxplus boxtimes additive multiplicative convolutions these moments expressed terms fuss narayana numbers

Melanie Hinz 1 ; Wojciech Młotkowski 1

1 Mathematical Institute University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_cm123_2_11,
     author = {Melanie Hinz and Wojciech M{\l}otkowski},
     title = {Free powers of the free {Poisson} measure},
     journal = {Colloquium Mathematicum},
     pages = {285--290},
     publisher = {mathdoc},
     volume = {123},
     number = {2},
     year = {2011},
     doi = {10.4064/cm123-2-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-11/}
}
TY  - JOUR
AU  - Melanie Hinz
AU  - Wojciech Młotkowski
TI  - Free powers of the free Poisson measure
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 285
EP  - 290
VL  - 123
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-11/
DO  - 10.4064/cm123-2-11
LA  - en
ID  - 10_4064_cm123_2_11
ER  - 
%0 Journal Article
%A Melanie Hinz
%A Wojciech Młotkowski
%T Free powers of the free Poisson measure
%J Colloquium Mathematicum
%D 2011
%P 285-290
%V 123
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-11/
%R 10.4064/cm123-2-11
%G en
%F 10_4064_cm123_2_11
Melanie Hinz; Wojciech Młotkowski. Free powers of the free Poisson measure. Colloquium Mathematicum, Tome 123 (2011) no. 2, pp. 285-290. doi : 10.4064/cm123-2-11. http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-11/

Cité par Sources :