A note on Nakai's conjecture for the ring $K[X_1,\ldots,X_n] / (a_1X_1^m+\cdots+a_nX_n^m)$
Colloquium Mathematicum, Tome 123 (2011) no. 2, pp. 277-283.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $k$ be a field of characteristic zero, $k[X_1,\ldots, X_n]$ the polynomial ring, and $B$ the ring ${k[X_1,\ldots, X_n]}/{(a_1X_1^m+\cdots +a_mX_n^m)}$, $0\neq a_i\in k$ for all $i$ and $ m, n\in \mathbb{N}$ with $n\geq 2$ and $m\geq 1$. Let $\mathop{\rm Der} _k^2(B)$ be the $B$-module of all second order $k$-derivations of $B$ and $ \mathop{\rm der} _k^2(B)=\mathop{\rm Der} _k^{1}(B)+\mathop{\rm Der} _k^1(B)\mathop{\rm Der} _k^{1}(B)$ where $\mbox{Der}_k^{1}(B)$ is the $B$-module of $k$-derivations of $B$. If $m\geq 2$ we exhibit explicitly a second order derivation $D\in \mathop{\rm Der} _k^2(B)$ such that $D\notin \mathop{\rm der} _k^2(B)$ and thus we prove that Nakai's conjecture is true for the $k$-algebra $B$.
DOI : 10.4064/cm123-2-10
Keywords: field characteristic zero ldots polynomial ring ring ldots cdots neq mathbb geq geq mathop der b module second order k derivations mathop der mathop der mathop der mathop der where mbox der b module k derivations geq exhibit explicitly second order derivation mathop der notin mathop der prove nakais conjecture k algebra nbsp

Paulo Roberto Brumatti 1 ; Marcelo Oliveira Veloso 2

1 IMECC-UNICAMP 13083-970, Campinas, SP, Brazil
2 CAP-UFSJ 36420-000, Ouro Branco, MG, Brazil
@article{10_4064_cm123_2_10,
     author = {Paulo Roberto Brumatti and Marcelo Oliveira Veloso},
     title = {A note on {Nakai's} conjecture for the ring $K[X_1,\ldots,X_n] / (a_1X_1^m+\cdots+a_nX_n^m)$},
     journal = {Colloquium Mathematicum},
     pages = {277--283},
     publisher = {mathdoc},
     volume = {123},
     number = {2},
     year = {2011},
     doi = {10.4064/cm123-2-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-10/}
}
TY  - JOUR
AU  - Paulo Roberto Brumatti
AU  - Marcelo Oliveira Veloso
TI  - A note on Nakai's conjecture for the ring $K[X_1,\ldots,X_n] / (a_1X_1^m+\cdots+a_nX_n^m)$
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 277
EP  - 283
VL  - 123
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-10/
DO  - 10.4064/cm123-2-10
LA  - en
ID  - 10_4064_cm123_2_10
ER  - 
%0 Journal Article
%A Paulo Roberto Brumatti
%A Marcelo Oliveira Veloso
%T A note on Nakai's conjecture for the ring $K[X_1,\ldots,X_n] / (a_1X_1^m+\cdots+a_nX_n^m)$
%J Colloquium Mathematicum
%D 2011
%P 277-283
%V 123
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-10/
%R 10.4064/cm123-2-10
%G en
%F 10_4064_cm123_2_10
Paulo Roberto Brumatti; Marcelo Oliveira Veloso. A note on Nakai's conjecture for the ring $K[X_1,\ldots,X_n] / (a_1X_1^m+\cdots+a_nX_n^m)$. Colloquium Mathematicum, Tome 123 (2011) no. 2, pp. 277-283. doi : 10.4064/cm123-2-10. http://geodesic.mathdoc.fr/articles/10.4064/cm123-2-10/

Cité par Sources :