Endomorphism rings of
maximal rigid objects in cluster tubes
Colloquium Mathematicum, Tome 123 (2011) no. 1, pp. 63-93
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We describe the endomorphism rings of maximal rigid objects in the cluster categories of tubes. Moreover, we show that they are gentle and have Gorenstein dimension 1. We analyse their representation theory and prove that they are of finite type. Finally, we study the relationship between the module category and the cluster tube via the Hom-functor.
Keywords:
describe endomorphism rings maximal rigid objects cluster categories tubes moreover gentle have gorenstein dimension analyse their representation theory prove finite type finally study relationship between module category cluster tube via hom functor
Affiliations des auteurs :
Dagfinn F. Vatne 1
@article{10_4064_cm123_1_6,
author = {Dagfinn F. Vatne},
title = {Endomorphism rings of
maximal rigid objects in cluster tubes},
journal = {Colloquium Mathematicum},
pages = {63--93},
publisher = {mathdoc},
volume = {123},
number = {1},
year = {2011},
doi = {10.4064/cm123-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm123-1-6/}
}
TY - JOUR AU - Dagfinn F. Vatne TI - Endomorphism rings of maximal rigid objects in cluster tubes JO - Colloquium Mathematicum PY - 2011 SP - 63 EP - 93 VL - 123 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm123-1-6/ DO - 10.4064/cm123-1-6 LA - en ID - 10_4064_cm123_1_6 ER -
Dagfinn F. Vatne. Endomorphism rings of maximal rigid objects in cluster tubes. Colloquium Mathematicum, Tome 123 (2011) no. 1, pp. 63-93. doi: 10.4064/cm123-1-6
Cité par Sources :