On generalized Fermat equations of signature $(p,p,3)$
Colloquium Mathematicum, Tome 123 (2011) no. 1, pp. 49-52
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper focuses on the Diophantine equation
$x^n+p^{\alpha}y^n=Mz^3$, with fixed $\alpha$, $p$, and $M$. We prove that,
under certain conditions on $M$, this equation has no non-trivial integer
solutions if $n\geq \mathcal F(M,p^\alpha)$,
where $\mathcal F(M,p^{\alpha})$ is an effective constant. This
generalizes Theorem 1.4 of the paper by Bennett, Vatsal and Yazdani
[Compos. Math. 140 (2004), 1399–1416].
Keywords:
paper focuses diophantine equation alpha fixed alpha prove under certain conditions equation has non trivial integer solutions geq mathcal alpha where mathcal alpha effective constant generalizes theorem paper bennett vatsal yazdani compos math
Affiliations des auteurs :
Karolina Krawciów 1
@article{10_4064_cm123_1_4,
author = {Karolina Krawci\'ow},
title = {On generalized {Fermat} equations of signature $(p,p,3)$},
journal = {Colloquium Mathematicum},
pages = {49--52},
publisher = {mathdoc},
volume = {123},
number = {1},
year = {2011},
doi = {10.4064/cm123-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm123-1-4/}
}
Karolina Krawciów. On generalized Fermat equations of signature $(p,p,3)$. Colloquium Mathematicum, Tome 123 (2011) no. 1, pp. 49-52. doi: 10.4064/cm123-1-4
Cité par Sources :