A remark on the identity principle for analytic sets
Colloquium Mathematicum, Tome 123 (2011) no. 1, pp. 21-26.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present a version of the identity principle for analytic sets, which shows that the extension theorem for separately holomorphic functions with analytic singularities follows from the case of pluripolar singularities.
DOI : 10.4064/cm123-1-2
Keywords: present version identity principle analytic sets which shows extension theorem separately holomorphic functions analytic singularities follows pluripolar singularities

Marek Jarnicki 1 ; Peter Pflug 2

1 Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland
2 Institut für Mathematik Carl von Ossietzky Universität Oldenburg Postfach 2503 D-26111 Oldenburg, Germany
@article{10_4064_cm123_1_2,
     author = {Marek Jarnicki and Peter Pflug},
     title = {A remark on the
 identity principle for analytic sets},
     journal = {Colloquium Mathematicum},
     pages = {21--26},
     publisher = {mathdoc},
     volume = {123},
     number = {1},
     year = {2011},
     doi = {10.4064/cm123-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm123-1-2/}
}
TY  - JOUR
AU  - Marek Jarnicki
AU  - Peter Pflug
TI  - A remark on the
 identity principle for analytic sets
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 21
EP  - 26
VL  - 123
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm123-1-2/
DO  - 10.4064/cm123-1-2
LA  - en
ID  - 10_4064_cm123_1_2
ER  - 
%0 Journal Article
%A Marek Jarnicki
%A Peter Pflug
%T A remark on the
 identity principle for analytic sets
%J Colloquium Mathematicum
%D 2011
%P 21-26
%V 123
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm123-1-2/
%R 10.4064/cm123-1-2
%G en
%F 10_4064_cm123_1_2
Marek Jarnicki; Peter Pflug. A remark on the
 identity principle for analytic sets. Colloquium Mathematicum, Tome 123 (2011) no. 1, pp. 21-26. doi : 10.4064/cm123-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm123-1-2/

Cité par Sources :