Optimal embeddings of generalized homogeneous Sobolev spaces
Colloquium Mathematicum, Tome 123 (2011) no. 1, pp. 1-20
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove optimal embeddings of homogeneous Sobolev spaces built over function spaces in ${\mathbb R}^n$
with $K$-monotone and rearrangement invariant norm into other rearrangement invariant function spaces.
The investigation is based on pointwise and integral estimates of the rearrangement or the oscillation of the rearrangement of $f$ in terms of the rearrangement of the derivatives of $f$.
Keywords:
prove optimal embeddings homogeneous sobolev spaces built function spaces mathbb k monotone rearrangement invariant norm other rearrangement invariant function spaces investigation based pointwise integral estimates rearrangement oscillation rearrangement terms rearrangement derivatives
Affiliations des auteurs :
Irshaad Ahmed 1 ; Georgi Eremiev Karadzhov 2
@article{10_4064_cm123_1_1,
author = {Irshaad Ahmed and Georgi Eremiev Karadzhov},
title = {Optimal embeddings of generalized homogeneous {Sobolev} spaces},
journal = {Colloquium Mathematicum},
pages = {1--20},
publisher = {mathdoc},
volume = {123},
number = {1},
year = {2011},
doi = {10.4064/cm123-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm123-1-1/}
}
TY - JOUR AU - Irshaad Ahmed AU - Georgi Eremiev Karadzhov TI - Optimal embeddings of generalized homogeneous Sobolev spaces JO - Colloquium Mathematicum PY - 2011 SP - 1 EP - 20 VL - 123 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm123-1-1/ DO - 10.4064/cm123-1-1 LA - en ID - 10_4064_cm123_1_1 ER -
Irshaad Ahmed; Georgi Eremiev Karadzhov. Optimal embeddings of generalized homogeneous Sobolev spaces. Colloquium Mathematicum, Tome 123 (2011) no. 1, pp. 1-20. doi: 10.4064/cm123-1-1
Cité par Sources :