A note on rings of constants of derivations in integral domains
Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 241-245.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We observe that the characterization of rings of constants of derivations in characteristic zero as algebraically closed subrings also holds in positive characteristic after some natural adaptation. We also present a characterization of such rings in terms of maximality in some families of rings.
DOI : 10.4064/cm122-2-9
Keywords: observe characterization rings constants derivations characteristic zero algebraically closed subrings holds positive characteristic after natural adaptation present characterization rings terms maximality families rings

Piotr Jędrzejewicz 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University 87-100 Toruń, Poland
@article{10_4064_cm122_2_9,
     author = {Piotr J\k{e}drzejewicz},
     title = {A note on rings of constants
 of derivations in integral domains},
     journal = {Colloquium Mathematicum},
     pages = {241--245},
     publisher = {mathdoc},
     volume = {122},
     number = {2},
     year = {2011},
     doi = {10.4064/cm122-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-9/}
}
TY  - JOUR
AU  - Piotr Jędrzejewicz
TI  - A note on rings of constants
 of derivations in integral domains
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 241
EP  - 245
VL  - 122
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-9/
DO  - 10.4064/cm122-2-9
LA  - en
ID  - 10_4064_cm122_2_9
ER  - 
%0 Journal Article
%A Piotr Jędrzejewicz
%T A note on rings of constants
 of derivations in integral domains
%J Colloquium Mathematicum
%D 2011
%P 241-245
%V 122
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-9/
%R 10.4064/cm122-2-9
%G en
%F 10_4064_cm122_2_9
Piotr Jędrzejewicz. A note on rings of constants
 of derivations in integral domains. Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 241-245. doi : 10.4064/cm122-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-9/

Cité par Sources :