The component quiver of
a self-injective artin algebra
Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 233-239
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that the component quiver ${\mit\Sigma }_A$ of a connected self-injective artin algebra $A$ of infinite representation type is fully cyclic, that is, every finite set of components of the Auslander–Reiten quiver ${\mit\Gamma }_A$ of $A$ lies on a common oriented cycle in ${\mit \Sigma }_A$.
Keywords:
prove component quiver mit sigma connected self injective artin algebra infinite representation type fully cyclic every finite set components auslander reiten quiver mit gamma lies common oriented cycle nbsp mit sigma
Affiliations des auteurs :
Alicja Jaworska 1 ; Andrzej Skowroński 1
@article{10_4064_cm122_2_8,
author = {Alicja Jaworska and Andrzej Skowro\'nski},
title = {The component quiver of
a self-injective artin algebra},
journal = {Colloquium Mathematicum},
pages = {233--239},
publisher = {mathdoc},
volume = {122},
number = {2},
year = {2011},
doi = {10.4064/cm122-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-8/}
}
TY - JOUR AU - Alicja Jaworska AU - Andrzej Skowroński TI - The component quiver of a self-injective artin algebra JO - Colloquium Mathematicum PY - 2011 SP - 233 EP - 239 VL - 122 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-8/ DO - 10.4064/cm122-2-8 LA - en ID - 10_4064_cm122_2_8 ER -
Alicja Jaworska; Andrzej Skowroński. The component quiver of a self-injective artin algebra. Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 233-239. doi: 10.4064/cm122-2-8
Cité par Sources :