The component quiver of a self-injective artin algebra
Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 233-239.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that the component quiver ${\mit\Sigma }_A$ of a connected self-injective artin algebra $A$ of infinite representation type is fully cyclic, that is, every finite set of components of the Auslander–Reiten quiver ${\mit\Gamma }_A$ of $A$ lies on a common oriented cycle in ${\mit \Sigma }_A$.
DOI : 10.4064/cm122-2-8
Keywords: prove component quiver mit sigma connected self injective artin algebra infinite representation type fully cyclic every finite set components auslander reiten quiver mit gamma lies common oriented cycle nbsp mit sigma

Alicja Jaworska 1 ; Andrzej Skowroński 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm122_2_8,
     author = {Alicja Jaworska and Andrzej Skowro\'nski},
     title = {The component quiver of
 a self-injective artin algebra},
     journal = {Colloquium Mathematicum},
     pages = {233--239},
     publisher = {mathdoc},
     volume = {122},
     number = {2},
     year = {2011},
     doi = {10.4064/cm122-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-8/}
}
TY  - JOUR
AU  - Alicja Jaworska
AU  - Andrzej Skowroński
TI  - The component quiver of
 a self-injective artin algebra
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 233
EP  - 239
VL  - 122
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-8/
DO  - 10.4064/cm122-2-8
LA  - en
ID  - 10_4064_cm122_2_8
ER  - 
%0 Journal Article
%A Alicja Jaworska
%A Andrzej Skowroński
%T The component quiver of
 a self-injective artin algebra
%J Colloquium Mathematicum
%D 2011
%P 233-239
%V 122
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-8/
%R 10.4064/cm122-2-8
%G en
%F 10_4064_cm122_2_8
Alicja Jaworska; Andrzej Skowroński. The component quiver of
 a self-injective artin algebra. Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 233-239. doi : 10.4064/cm122-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-8/

Cité par Sources :