A generalization of a theorem of Mammana
Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 215-223
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that any linear ordinary differential operator with complex-valued coefficients continuous in an interval $I$ can be factored into a product of first-order operators globally defined on $I$. This generalizes a theorem of Mammana for the case of real-valued coefficients.
Keywords:
prove linear ordinary differential operator complex valued coefficients continuous interval factored product first order operators globally defined generalizes theorem mammana real valued coefficients
Affiliations des auteurs :
Roberto Camporesi 1 ; Antonio J. Di Scala 2
@article{10_4064_cm122_2_6,
author = {Roberto Camporesi and Antonio J. Di Scala},
title = {A generalization of a theorem of {Mammana}},
journal = {Colloquium Mathematicum},
pages = {215--223},
publisher = {mathdoc},
volume = {122},
number = {2},
year = {2011},
doi = {10.4064/cm122-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-6/}
}
TY - JOUR AU - Roberto Camporesi AU - Antonio J. Di Scala TI - A generalization of a theorem of Mammana JO - Colloquium Mathematicum PY - 2011 SP - 215 EP - 223 VL - 122 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-6/ DO - 10.4064/cm122-2-6 LA - en ID - 10_4064_cm122_2_6 ER -
Roberto Camporesi; Antonio J. Di Scala. A generalization of a theorem of Mammana. Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 215-223. doi: 10.4064/cm122-2-6
Cité par Sources :