Markov product of positive definite kernels and applications to $Q$-matrices of graph products
Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 177-184.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show positivity of the $Q$-matrix of four kinds of graph products: direct product (Cartesian product), star product, comb product, and free product. During the discussion we give an alternative simple proof of the Markov product theorem on positive definite kernels.
DOI : 10.4064/cm122-2-2
Keywords: positivity q matrix kinds graph products direct product cartesian product star product comb product product during discussion alternative simple proof markov product theorem positive definite kernels

Nobuaki Obata 1

1 Graduate School of Information Sciences Tohoku University Sendai 980-8579, Japan
@article{10_4064_cm122_2_2,
     author = {Nobuaki Obata},
     title = {Markov product of positive definite kernels and applications to $Q$-matrices of graph products},
     journal = {Colloquium Mathematicum},
     pages = {177--184},
     publisher = {mathdoc},
     volume = {122},
     number = {2},
     year = {2011},
     doi = {10.4064/cm122-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-2/}
}
TY  - JOUR
AU  - Nobuaki Obata
TI  - Markov product of positive definite kernels and applications to $Q$-matrices of graph products
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 177
EP  - 184
VL  - 122
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-2/
DO  - 10.4064/cm122-2-2
LA  - en
ID  - 10_4064_cm122_2_2
ER  - 
%0 Journal Article
%A Nobuaki Obata
%T Markov product of positive definite kernels and applications to $Q$-matrices of graph products
%J Colloquium Mathematicum
%D 2011
%P 177-184
%V 122
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-2/
%R 10.4064/cm122-2-2
%G en
%F 10_4064_cm122_2_2
Nobuaki Obata. Markov product of positive definite kernels and applications to $Q$-matrices of graph products. Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 177-184. doi : 10.4064/cm122-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-2/

Cité par Sources :