Théorème de la clôture $lq$-modulaire et applications
Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 275-287
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be a purely inseparable extension of a field $k$ of
characteristic $p\not=0$. Suppose that $[k:k^{p}]$ is finite. We
recall that $K/k$ is $lq$-modular if $K$ is modular over a finite
extension of $k$. Moreover, there exists a smallest extension $m/k$
(resp. $M/K$) such that $K/m$ (resp. $M/k$) is $lq$-modular.
Our main result states the existence
of a greatest $lq$-modular and relatively perfect subextension of
$K/k$. Other results can be summarized in
the following:1.
The product of $lq$-modular extensions over $k$ is $lq$-modular over $k$.
2. If we augment the ground field of an $lq$-modular
extension, the $lq$-modularity is preserved.
Generally, for all intermediate fields $K_1$ and $K_2$ of $K/k$ such
that $K_1/k$ is $lq$-modular over $k$, $K_1(K_2)/K_2$ is
$lq$-modular.
By successive application of the theorem on $lq$-modular closure
(our main result), we deduce that the smallest extension
$m/k$ of $K/k$ such that $K/m$ is $lq$-modular is non-trivial (i.e.
$m\not = K$). More precisely if $K/k$ is infinite, then $K/m$ is
infinite.
Mots-clés :
purely inseparable extension field characteristic suppose finite recall lq modular modular finite extension moreover there exists smallest extension resp resp lq modular main result states existence greatest lq modular relatively perfect subextension other results summarized following product lq modular extensions lq modular nbsp augment ground field lq modular extension lq modularity preserved generally intermediate fields lq modular lq modular successive application theorem lq modular closure main result deduce smallest extension lq modular non trivial precisely infinite infinite
Affiliations des auteurs :
Mustapha Chellali 1 ; El hassane Fliouet 1
@article{10_4064_cm122_2_13,
author = {Mustapha Chellali and El hassane Fliouet},
title = {Th\'eor\`eme de la cl\^oture $lq$-modulaire et applications},
journal = {Colloquium Mathematicum},
pages = {275--287},
year = {2011},
volume = {122},
number = {2},
doi = {10.4064/cm122-2-13},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-13/}
}
TY - JOUR AU - Mustapha Chellali AU - El hassane Fliouet TI - Théorème de la clôture $lq$-modulaire et applications JO - Colloquium Mathematicum PY - 2011 SP - 275 EP - 287 VL - 122 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-13/ DO - 10.4064/cm122-2-13 LA - fr ID - 10_4064_cm122_2_13 ER -
Mustapha Chellali; El hassane Fliouet. Théorème de la clôture $lq$-modulaire et applications. Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 275-287. doi: 10.4064/cm122-2-13
Cité par Sources :