Théorème de la clôture $lq$-modulaire et applications
Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 275-287.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $K$ be a purely inseparable extension of a field $k$ of characteristic $p\not=0$. Suppose that $[k:k^{p}]$ is finite. We recall that $K/k$ is $lq$-modular if $K$ is modular over a finite extension of $k$. Moreover, there exists a smallest extension $m/k$ (resp. $M/K$) such that $K/m$ (resp. $M/k$) is $lq$-modular. Our main result states the existence of a greatest $lq$-modular and relatively perfect subextension of $K/k$. Other results can be summarized in the following:1. The product of $lq$-modular extensions over $k$ is $lq$-modular over $k$. 2. If we augment the ground field of an $lq$-modular extension, the $lq$-modularity is preserved. Generally, for all intermediate fields $K_1$ and $K_2$ of $K/k$ such that $K_1/k$ is $lq$-modular over $k$, $K_1(K_2)/K_2$ is $lq$-modular. By successive application of the theorem on $lq$-modular closure (our main result), we deduce that the smallest extension $m/k$ of $K/k$ such that $K/m$ is $lq$-modular is non-trivial (i.e. $m\not = K$). More precisely if $K/k$ is infinite, then $K/m$ is infinite.
DOI : 10.4064/cm122-2-13
Mots-clés : purely inseparable extension field characteristic suppose finite recall lq modular modular finite extension moreover there exists smallest extension resp resp lq modular main result states existence greatest lq modular relatively perfect subextension other results summarized following product lq modular extensions lq modular nbsp augment ground field lq modular extension lq modularity preserved generally intermediate fields lq modular lq modular successive application theorem lq modular closure main result deduce smallest extension lq modular non trivial precisely infinite infinite

Mustapha Chellali 1 ; El hassane Fliouet 1

1 Département de mathématiques Faculté des sciences Université Mohammed 1 Oujda, Maroc
@article{10_4064_cm122_2_13,
     author = {Mustapha Chellali and El hassane Fliouet},
     title = {Th\'eor\`eme de la cl\^oture $lq$-modulaire et applications},
     journal = {Colloquium Mathematicum},
     pages = {275--287},
     publisher = {mathdoc},
     volume = {122},
     number = {2},
     year = {2011},
     doi = {10.4064/cm122-2-13},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-13/}
}
TY  - JOUR
AU  - Mustapha Chellali
AU  - El hassane Fliouet
TI  - Théorème de la clôture $lq$-modulaire et applications
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 275
EP  - 287
VL  - 122
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-13/
DO  - 10.4064/cm122-2-13
LA  - fr
ID  - 10_4064_cm122_2_13
ER  - 
%0 Journal Article
%A Mustapha Chellali
%A El hassane Fliouet
%T Théorème de la clôture $lq$-modulaire et applications
%J Colloquium Mathematicum
%D 2011
%P 275-287
%V 122
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-13/
%R 10.4064/cm122-2-13
%G fr
%F 10_4064_cm122_2_13
Mustapha Chellali; El hassane Fliouet. Théorème de la clôture $lq$-modulaire et applications. Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 275-287. doi : 10.4064/cm122-2-13. http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-13/

Cité par Sources :