On Bailey pairs and certain $q$-series related to quadratic and ternary quadratic forms
Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 265-273
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We provide a new approach to establishing certain $q$-series identities that were proved by Andrews, and show how to prove further identities using conjugate Bailey pairs. Some relations between some $q$-series and ternary quadratic forms are established.
Keywords:
provide approach establishing certain q series identities proved andrews prove further identities using conjugate bailey pairs relations between q series ternary quadratic forms established
Affiliations des auteurs :
Alexander E. Patkowski 1
@article{10_4064_cm122_2_12,
author = {Alexander E. Patkowski},
title = {On {Bailey} pairs and certain $q$-series related to quadratic and ternary quadratic forms},
journal = {Colloquium Mathematicum},
pages = {265--273},
publisher = {mathdoc},
volume = {122},
number = {2},
year = {2011},
doi = {10.4064/cm122-2-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-12/}
}
TY - JOUR AU - Alexander E. Patkowski TI - On Bailey pairs and certain $q$-series related to quadratic and ternary quadratic forms JO - Colloquium Mathematicum PY - 2011 SP - 265 EP - 273 VL - 122 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-12/ DO - 10.4064/cm122-2-12 LA - en ID - 10_4064_cm122_2_12 ER -
%0 Journal Article %A Alexander E. Patkowski %T On Bailey pairs and certain $q$-series related to quadratic and ternary quadratic forms %J Colloquium Mathematicum %D 2011 %P 265-273 %V 122 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-12/ %R 10.4064/cm122-2-12 %G en %F 10_4064_cm122_2_12
Alexander E. Patkowski. On Bailey pairs and certain $q$-series related to quadratic and ternary quadratic forms. Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 265-273. doi: 10.4064/cm122-2-12
Cité par Sources :