On Bailey pairs and certain $q$-series related to quadratic and ternary quadratic forms
Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 265-273.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We provide a new approach to establishing certain $q$-series identities that were proved by Andrews, and show how to prove further identities using conjugate Bailey pairs. Some relations between some $q$-series and ternary quadratic forms are established.
DOI : 10.4064/cm122-2-12
Keywords: provide approach establishing certain q series identities proved andrews prove further identities using conjugate bailey pairs relations between q series ternary quadratic forms established

Alexander E. Patkowski 1

1 University of Regina Regina, Saskatchewan, Canada S4S 0A2
@article{10_4064_cm122_2_12,
     author = {Alexander E. Patkowski},
     title = {On {Bailey} pairs and certain $q$-series related to quadratic and ternary quadratic forms},
     journal = {Colloquium Mathematicum},
     pages = {265--273},
     publisher = {mathdoc},
     volume = {122},
     number = {2},
     year = {2011},
     doi = {10.4064/cm122-2-12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-12/}
}
TY  - JOUR
AU  - Alexander E. Patkowski
TI  - On Bailey pairs and certain $q$-series related to quadratic and ternary quadratic forms
JO  - Colloquium Mathematicum
PY  - 2011
SP  - 265
EP  - 273
VL  - 122
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-12/
DO  - 10.4064/cm122-2-12
LA  - en
ID  - 10_4064_cm122_2_12
ER  - 
%0 Journal Article
%A Alexander E. Patkowski
%T On Bailey pairs and certain $q$-series related to quadratic and ternary quadratic forms
%J Colloquium Mathematicum
%D 2011
%P 265-273
%V 122
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-12/
%R 10.4064/cm122-2-12
%G en
%F 10_4064_cm122_2_12
Alexander E. Patkowski. On Bailey pairs and certain $q$-series related to quadratic and ternary quadratic forms. Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 265-273. doi : 10.4064/cm122-2-12. http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-12/

Cité par Sources :