Lower quantization coefficient and the $F$-conformal measure
Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 255-263
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $F=\{ f^{(i)} : 1\leq i\leq N\}$ be a family
of Hölder continuous functions and let $\{\varphi_i : 1 \leq i\leq N\}$ be a
conformal iterated function system. Lindsay and Mauldin's paper [Nonlinearity 15 (2002)] left an open question whether the lower quantization coefficient for the $F$-conformal measure on a conformal iterated funcion system satisfying the open set condition is positive. This question was positively answered by Zhu. The goal of this paper is to present a different proof of this result.
Keywords:
leq leq family lder continuous functions varphi leq leq conformal iterated function system lindsay mauldins paper nonlinearity question whether lower quantization coefficient f conformal measure conformal iterated funcion system satisfying set condition positive question positively answered zhu paper present different proof result
Affiliations des auteurs :
Mrinal Kanti Roychowdhury  1
@article{10_4064_cm122_2_11,
author = {Mrinal Kanti Roychowdhury},
title = {Lower quantization coefficient and the $F$-conformal measure},
journal = {Colloquium Mathematicum},
pages = {255--263},
year = {2011},
volume = {122},
number = {2},
doi = {10.4064/cm122-2-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-11/}
}
TY - JOUR AU - Mrinal Kanti Roychowdhury TI - Lower quantization coefficient and the $F$-conformal measure JO - Colloquium Mathematicum PY - 2011 SP - 255 EP - 263 VL - 122 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm122-2-11/ DO - 10.4064/cm122-2-11 LA - en ID - 10_4064_cm122_2_11 ER -
Mrinal Kanti Roychowdhury. Lower quantization coefficient and the $F$-conformal measure. Colloquium Mathematicum, Tome 122 (2011) no. 2, pp. 255-263. doi: 10.4064/cm122-2-11
Cité par Sources :